Линии и поверхности разрыва. Линия разрыва

В начертательной геометрии поверхность рассматривают как множество последовательных положений движущейся линии или другой поверхности в пространстве. Линию, перемещающуюся в пространстве и образующую поверхность, называют образующей. Образующие могут быть прямыми и кривыми. Кривые образующие могут быть постоянными и переменными, например закономерно изменяющимися.

Одна и та же поверхность в ряде случаев может рассматриваться как образованная движениями различных образующих. Например, круговой цилиндр может быть образован: во-первых, вращением прямой относительно неподвижной оси, параллельной образующей; во-вторых, движением окружности, центр которой перемещается по прямой, перпендикулярной плоскости окружности; в-третьих, прямолинейным движением сферы.

При изображении поверхности на чертеже показывают лишь некоторые из множества возможных положений образующей. На рис. 8.1 показана поверхность образующей АВ. При своем движении образующая остается параллельной направлению MN и одновременно пересекает некоторую кривую линию CDE. Таким образом, движение образующей AB направляется в пространстве линией CDE.

Линию или линии, пересечение с которыми является обязательным условием движения образующей при образовании поверхности, называют направляющей или направляющими.

На рис. 8.2 показана поверхность, образованная движением прямой AB по двум направляющим – прямой O1 <⅞ (ABE O iO 2) и пространственной кривой FGL, не пересекающей прямую O10 2.

Иногда в качестве направляющей используют линию, по которой движется некоторая характерная для образующей точка, но не лежащая на ней, например центр окружности.

Из различных форм образующих, направляющих, а также закономерностей образования конкретной поверхности выбирают те, которые являются наиболее простыми и удобными для изображения на чертеже поверхности и решения задач, связанных с нею.

Иногда для задания поверхности используют понятие "определитель поверхности", под которым подразумевают совокупность независимых условий, однозначно задающих поверхность. В числе условий, входящих в состав определителя, различают геометрическую часть (точки, линии, поверхности) и закон (алгоритм) образования поверхности геометрической частью определителя.

Рассмотрим краткую классификацию кривых поверхностей, принятую в начертательной геометрии.

Линейчатые развертываемые поверхности. Поверхность, которая может быть образована прямой линией, называют линейчатой поверхностью. Если линейчатая поверхность может быть развернута так, что всеми своими точками она совместится с плоскостью без каких-либо повреждений поверхности (разрывов или складок), то ее называют развертываемой. К развертываемым поверхностям относятся только такие линейчатые поверхности, у которых смежные прямолинейные образующие параллельны или пересекаются между собой, или являются касательными к некоторой пространственной кривой. Все остальные линейчатые и все нелинейчатые поверхности относятся к неразвертываемым поверхностям.

Развертываемые поверхности – цилиндрические, конические, с ребром возврата или торсовые. У цилиндрической поверхности образующие всегда параллельны, направляющая – одна кривая линия. Изображение на чертеже ранее показанной в пространстве цилиндрической поверхности (см. рис. 8.1) представлено на рис. 8.3. Частные случаи – прямой круговой цилиндр, наклонный круговой цилиндр (см. рис. 9.17, направляющая-окружность, плоскость которой расположена под углом к оси цилиндра и с центром на его оси). У конических поверхностей все прямолинейные образующие имеют общую неподвижную точку – вершину, направляющая – одна любая кривая линия. Пример изображения конической

поверхности на чертеже – рис. 8.4, проекции вершины G", G", направляющей C"D"E", C"D"E". Частные случаи – прямой круговой конус, наклонный круговой конус – см. рис. 10.10, справа. У поверхностей с ребром возврата или торсовых прямолинейные образующие касательны к одной криволинейной направляющей.

Линейчатые неразвертываемые поверхности: цилиндроид, коноид, гиперболический параболоид (косая плоскость). Поверхность, называемая цилиндроидом, образуется при перемещении прямой линии, во всех своих положениях сохраняющей параллельность некоторой заданной плоскости ("плоскости параллелизма") и пересекающей две кривые линии (две направляющие). Поверхность, называемая коноидом, образуется при перемещении прямой линии, во всех своих положениях сохраняющей параллельность некоторой плоскости ("плоскости параллелизма") и пересекающей две направляющие, одна из которых кривая, а другая – прямая линия (рис. 8.5, см. также рис. 8.2). Плоскостью параллелизма на рис. 8.5 является плоскость π1;

направляющие – кривая с проекциями E"G"F", E"G"F", прямая с проекциями О",0", О" ,0. В частном случае, если криволинейная направляющая – цилиндрическая винтовая линия с осью, совпадающей с прямолинейной направляющей, образуемая поверхность – винтовой коноид, рассматриваемый ниже. Чертеж гиперболического параболоида, называемого косой плоскостью, приведен на рис. 8.6. Образование этой поверхности можно рассматривать как результат перемещения прямолинейной образующей по двум направляющим – скрещивающимся прямым параллельно некоторой плоскости параллелизма. На рис. 8.6 плоскость параллелизма – плоскость проекции яь направляющие – прямые с проекциями M"N", M"N" и F"G", F"G".

Нелинейчатые поверхности. Их подразделяют на поверхности с постоянной образующей и с переменной образующей.

Поверхности с постоянной образующей в свою очередь подразделяют на поверхности вращения с криволинейной образующей, например сфера, тор, эллипсоид вращения и др., и на циклические поверхности, например поверхности изогнутых труб постоянного сечения, пружин.

Поверхности с переменной образующей подразделяют на поверхности второго порядка, циклические с переменной образующей, каркасные. Чертеж поверхности второго порядка – эллипсоида приведен на рис. 8.7. Образующая эллипсоида – деформирующийся эллипс. Две направляющие – два пересекающихся эллипса, плоскости которых ортогональны и одна ось – общая. Образующая пересекает направляющие в крайних точках своих осей.

Плоскость образующего эллипса при перемещении остается параллельной плоскости, образованной двумя пересекающимися осями направляющих эллипсов.

Циклические поверхности с переменной образующей имеют образующую – окружность переменного радиуса, направляющую – кривую, по которой перемещается центр образующей, плоскость образующей перпендикулярна направляющей. Каркасную поверхность задают не движущейся образующей, а некоторым количеством линий на поверхности.

Обычно такие линии – плоские кривые,

плоскости которых параллельны между собой. Две группы таких линий пересекают друг друга и образуют линейчатый каркас поверхности. Точки пересечения линий образуют точечный каркас поверхности. Точечный каркас поверхности может быть задан и координатами точек поверхности. Каркасные поверхности широко используют при конструировании корпусов судов, самолетов, автомобилей, баллонов электронно-лучевых трубок.

Из указанных поверхностей рассмотрим более подробно винтовую.

Поверхностью уровня поля называют геометрическое место точек, в которых поле принимает постоянное значение. Согласно такому определению, уравнение поверхности уровня будет иметь вид: или

Кривые безразличия - представляют собой совокупность точек на координатной плоскости, каждая из которых является потребительским набором, обеспечивающим потребителю одинаковый уровень удовлетворения его потребностей. Кривая безразличия является графическим отображением набора безразличия

ВОПРОС 36. Предел и непрерывность функции нескольких переменных. Последовательные пределы.

Определение 1. Число А называется пределом функции в точке (или при и ), если для любого сколь угодно малого положительного числа найдется положительное число такое, что для всех точек , отстоящих от точки на расстояние, меньшее чем , выполняется неравенство

Обозначается предел

Определение 2. Функция называется непрерывной в точке , если предел функции в этой точке существует и

Точки, в которых функция не обладает свойством непрерывности, называются точками разрыва.

На функции нескольких переменных переносятся все свойства и методы теории пределов функции одной переменной.

ВОПРОС 37. Дифференцируемость функции и дифференциал первого порядка, частные дифференциалы и частные производные первого порядка.

ВОПРОС 38.Градиент и производная по направлению.

ВОПРОС 39.Производные и дифференциалы высших порядков. Приложения дифференциального исчисления функций нескольких переменных в моделировании таможенных процессов.

Предположим, что функция f"(x) является дифференцируемой в некоторой точке x интервала (a,b), то есть имеет в этой точке производную. Тогда данную производную называют второй произвоьдной и обозначают f(2)(x), f""(x) или y(2), y""(x). Аналогично можно ввести понятие второй, третьей и т. д. производных. По индукции можно ввести понятие n- ой производной:

y(n) = (y(n-1))". (6)

Функцию, имеющую на некотором множестве конечную производную порядка n, называют n раз дифференцируемой на этом множестве. Методика нахождения производных высших порядков предполагает умение находить производные первого порядка, о чем говорит формула (6).

Если u(x), v(x) две дифференцируемые функции, то для нахождения производной их произведения справедлива формула Лейбница

(u(x)v(x))(n) = u(n)v+nu(n-1)v"+(n(n-1)/2)u(n-2)v""+...+ uv(n) =

Sk = 0nCnku(n-k)v(k),

Cnk = (n(n-1)(n-2)...(n-k+1))/k!, u(0) = u, v(0) = v.

Данная формула Лейбница особенно эффективна в случае, когда одна из перемножаемых функций имеет конечное число отличных от нуля производных и легко вычислить производные другой функции.

Пример 9. Пусть y = ex(x2-1). Найти y(10). Положим u(x) = ex,

v(x) = (x2-1). Согласно формуле Лейбница

y(10) = (ex)(25)(x2-1)+10(ex)(9)(x2-1)"+(10· 9/2) (ex)(8)(x2-1)"",

так как следующие слагаемые равны нулю. Поэтому

y(10) = ex(x2-1)+10ex2x+(10· 9/2)ex (2) = ex(x2+20x+89)

Рассмотрим выражение для первого дифференциала

Пусть функция, стоящая в правой части, является дифференцируемой функцией в данной точке x. Для этого достаточно, чтобы y = f(x), была дифференцируема два раза в данной точке x, а аргумент либо является независимой переменной, либо представляет собой дважды дифференцируемую функцию.

Определение 6 (дифференциал второго порядка). Значение d(dy) дифференциала от первого дифференциала (4) при d x = dx, называется вторым дифференциалом функции y = f(x) и обозначается d2y.

Таким образом,

d2y = d (dy)|d x = dx.

Дифференциал dny можно ввести по индукции.

ВОПРОС 40. Локальные и условные экстремумы функций нескольких переменных. Экстремальные задачи в моделировании таможенных процессов.

Локальный экстремум .

Пусть дана функция , определенная в открытой области пространства , и пусть точка .

Определение1. Точка называется точкой минимума функции если существует окрестность точки, в которой выполняется неравенство:

Т.е.

(аналогично точка максимума)

В предыдущих главах мы рассматривали только такие течения, при которых распределение всех величин (скорости, давления, плотности и т. д.) в газе непрерывно. Возможны, однако, и движения, при которых возникают разрывы непрерывности в распределении этих величин.

Разрыв непрерывности в движении газа имеет место вдоль некоторых поверхностей; при прохождении через такую поверхность указанные величины испытывают скачок. Эти поверхности называют поверхностями разрыва. При нестационарном движении газа поверхности разрыва не остаются, вообще говоря, неподвижными; необходимо при этом подчеркнуть, что скорость движения поверхности разрыва не имеет ничего общего со скоростью движения самого газа. Частицы газа при своем движении могут проходить через эту поверхность, пересекая ее.

На поверхностях разрыва должны выполняться определенные граничные условия.

Для формулирования этих условий рассмотрим какой-нибудь элемент поверхности разрыва и воспользуемся связанной с этим элементом системой координат с осью направленной по нормали к нему.

Во-первых, на поверхности разрыва должен быть непрерывен поток вещества: количество газа, входящего с одной стороны, должно быть равно количеству газа, выходящему с другой стороны поверхности. Поток газа через рассматриваемый элемент поверхности (отнесенный на единицу площади) равен Поэтому должно выполняться условие где индексы 1 и 2 относятся к двум сторонам поверхности разрыва.

Разность значений какой-либо величины с обеих сторон поверхности разрыва мы будем ниже обозначать посредством квадратных скобок; так,

и полученное условие напишется в виде

Наконец, должен быть непрерывен поток импульса, т. е. должны быть равны силы, с которыми действуют друг на друга газы по обеим сторонам поверхности разрыва. Поток импульса через единицу площади равен (см. § 7)

Вектор нормали направлен по оси Поэтому непрерывность А - компоненты потока импульса приводит к условию

а непрерывность у- и -компонент дает

Уравнения (84,1-4) представляют собой полную систему граничных условий на поверхности разрыва. Из них можно сразу сделать вывод о возможности существования двух типов поверхностей разрыва.

В первом случае через поверхность разрыва нет потока вещества. Это значит, что Поскольку отличны от нуля, то это значит, что должно быть

Условия (84,2) и (84,4) в этом случае удовлетворяются автоматически, а условие (84,3) дает Таким образом, на поверхности разрыва в этом случае непрерывны нормальная компонента скорости и давление газа:

Тангенциальные же скорости и плотность (а также другие термодинамические величины, кроме давления) могут испытывать произвольный скачок. Такие разрывы будем называть тангенциальными.

Во втором случае поток вещества, а с ним и отличны от нуля. Тогда из (84,1) и (84,4) имеем:

т, е. тангенциальная скорость непрерывна на поверхности разрыва. Плотность же, давление (а потому и другие термодинамические величины) и нормальная скорость испытывают скачок, причем скачки этих величин связаны соотношениями (84,1-3). В условии (84,2) мы можем в силу (84,1) сократить а вместо можно в силу непрерывности v и писать v. Таким образом, на поверхности разрыва в рассматриваемом случае должны иметь место условия:

Разрывы этого типа называют ударными волнами.

Если теперь вернуться к неподвижной системе координат, то вместо надо везде писать разность между нормальной к поверхности разрыва компонентой скорости газа и скоростью и самой поверхности, направленной, по определению, по нормали к ней:

Скорости и и берутся относительно неподвижной системы отсчета. Скорость есть скорость движения газа относительно поверхности разрыва; иначе можно сказать, что есть скорость распространения самой поверхности разрыва относительно газа. Обращаем внимание на то, что эта скорость различна по отношению к газу с обеих сторон поверхности (если испытывает разрыв).

Тангенциальные разрывы, на которых испытывают скачок касательные компоненты скорости, рассматривались нами уже в § 29. Там было показано, что в несжимаемой жидкости такие разрывы неустойчивы и должны размываться в турбулентную область. Аналогичное исследование для сжимаемой жидкости показывает, что такая неустойчивость имеет место и в общем случае произвольных скоростей (см. задачу 1).

Частным случаем тангенциальных разрывов являются разрывы, в которых скорость непрерывна и испытывает скачок только плотность (а с ней и другие термодинамические величины за исключением давления); такие разрывы называют контактными. Сказанное выше о неустойчивости, к ним не относится.

ЛИНИЯ РАЗРЫВА

ЛИНИЯ РАЗРЫВА

Прямая, проведенная через точку разрыва параллельно линии боевого пути самолета.

Самойлов К. И. Морской словарь. - М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР , 1941


Смотреть что такое "ЛИНИЯ РАЗРЫВА" в других словарях:

    См. Разрыв. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

    линия разрыва - sprogimo linija statusas T sritis Gynyba apibrėžtis Tiesė, jungianti pabūklą su sprogimu. atitikmenys: angl. line of burst rus. линия разрыва … Artilerijos terminų žodynas

    ЛИНИЯ СДВИГА ВЕТРА - линия разрыва ветра, граница между зонами с различными скоростями или направлением ветра … Словарь ветров

    Находящаяся в плоскости кровли или подошвы пласта (слоя, жилы и др. геол. тел) или в плоскости разрыва. к линии простирания; направлена вниз по падению пласта (слоя, жилы) или плоскости разрыва. См. Падение. Геологический словарь: в 2 х томах. М … Геологическая энциклопедия

    ЛИНИЯ - (1) общая часть двух смежных областей поверхности; (2) Л. автоматическая комплекс станков и машин, основного и вспомогательного оборудования, автоматически выполняющих в технологической последовательности и с заданным ритмом весь процесс… … Большая политехническая энциклопедия

    Линия пересечения кровли или подошвы пласта (слоя, жилы и др. геол. тел) или плоскости разрыва с горизонтальной плоскостью. См. Простирание. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

    Прямая линия, соединяющая точку разрыва с точкой сбрасывания. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

    Эта статья или раздел статьи содержит информацию об ожидаемом событии или запланированном объекте инфраструктуры, связанном с метро. Содержание ста … Википедия

    - (ВОЛП), Волоконно оптическая линия связи (ВОЛС) волоконно оптическая система, состоящая из пассивных и активных элементов, предназначенная для передачи информации в оптическом (как правило ближнем инфракрасном) диапазоне. Содержание 1 … Википедия

    ПЕРЕЛОМЫ - ПЕРЕЛОМЫ, всякое полное нарушение целости твердого предмета (Wegner), в данном случае кости. П., являясь результатом наиболее тяжелых травм, составляют одну из самых серьезных глав травматологии. По статистике Брунса (London Hospital 300 000… … Большая медицинская энциклопедия

Книги

  • Литературная классика на экране. Ни шагу назад (4DVD) , Ершов Михаил Иванович, Столпер Александр, Егиазаров Гавриил Георгиевич. 1. БЛОКАДА. ЧАСТЬ 1 (1975 г., 2 фильма, 177 мин.) Киноэпопея по одноимённому роману Александра Чаковского. Награды ВКФ. К лету 1941 года фашистские захватчики подошли к Ленинграду. Только…