Что такое жк монитор. LCD-мониторы

Современные электронные устройства являются практически универсальными. Так, например, смартфон превосходно справляется не только со звонками (их приемом и совершением), но и возможностью бороздить просторы интернета, слушать музыку, просматривать видеоролики или читать книги. Для этих же задач подойдет планшет. Экран является одной из важнейших частей электроники, особенно если он - сенсорный и служит не только для отображения файлов, но и для управления. Ознакомимся с характеристиками дисплеев и технологиями, по которым они создаются. Уделим особое внимание тому, что такое IPS-экран, что это за технология, в чем ее преимущества.

Как устроен ЖК-экран

Прежде всего разберемся, как устроен которым оснащается современная техника. Во-первых, это активная матрица. Она состоит из микропленочных транзисторов. Благодаря им и формируется изображение. Во-вторых, это слой жидких кристаллов. Они оснащены светофильтрами и создают R-, G-, B-субпиксели. В-третьих, это система подсветки экрана, которая позволяет сделать изображение видимым. Она может быть люминесцентной или светодиодной.

Особенности IPS-технологии

Строго говоря, матрица IPS - разновидность технологии TFT, по которой создаются ЖК-экраны. Под TFT часто понимают мониторы, произведенные способом TN-TFT. Исходя из этого, можно произвести их сравнение. Чтобы ознакомиться с тонкостями выбора электроники, разберемся, что такое технология экрана IPS, что это понятие обозначает. Главное, что отличает эти дисплеи от TN-TFT, - расположение жидкокристаллических пикселей. Во втором случае они располагаются по спирали, находятся под углом в девяносто градусов горизонтально между двумя пластинами. В первом (который нас интересует больше всего) матрица состоит из тонкопленочных транзисторов. Причем кристаллы располагаются вдоль плоскости экрана параллельно друг другу. Без поступления на них напряжения они не поворачиваются. У TFT каждый транзистор управляет одной точкой экрана.

Отличие IPS от TN-TFT

Рассмотрим подробнее IPS, что это такое. У мониторов, созданных по данной технологии, есть масса преимуществ. Прежде всего, это великолепная цветопередача. Весь спектр оттенков ярок, реалистичен. Благодаря широкому углу обзора изображение не блекнет, с какой точки на него ни взгляни. У мониторов более высокая, четкая контрастность благодаря тому, что черный цвет передается просто идеально. Можно отметить следующие минусы, которыми обладает тип экрана IPS. Что это, прежде всего, большое потребление энергии, значительный недостаток. К тому же устройства, оснащенные такими экранами, стоят дорого, так как их производство очень затратное. Соответственно, TN-TFT обладают диаметрально противоположными характеристиками. У них меньше угол обзора, при изменении точки взгляда изображение искажается. На солнце ими пользоваться не очень удобно. Картинка темнеет, мешают блики. Однако такие дисплеи имеют быстрый отклик, меньше потребляют энергии и доступны по цене. Поэтому подобные мониторы устанавливают в бюджетных моделях электроники. Таким образом, можно заключить, в каких случаях подойдет IPS-экран, что это великолепная вещь для любителей кино, фото и видео. Однако из-за меньшей отзывчивости их не рекомендуют поклонникам динамичных компьютерных игр.

Разработки ведущих компаний

Сама технология IPS была создана японской компанией Hitachi совместно с NEC. Новым в ней было расположение жидкокристаллических кристаллов: не по спирали (как в TN-TFT), а параллельно друг другу и вдоль экрана. В результате такой монитор передает цвета более яркие и насыщенные. Изображение видно даже на открытом солнце. Угол обзора IPS-матрицы составляет сто семьдесят восемь градусов. Смотреть можно на экран с любой точки: снизу, сверху, справа, слева. Картинка остается четкой. Популярные планшеты с экраном IPS выпускает компания Apple, они создаются на матрице IPS Retina. На один дюйм используется увеличенная плотность пикселей. В результате изображение на дисплее выходит без зернистости, цвета передаются плавно. По словам разработчиков, человеческий глаз не замечает микрочастиц, если пикселей более 300 ppi. Сейчас устройства с IPS-дисплеями становятся более доступными по цене, ими начинают снабжать бюджетные модели электроники. Создаются новые разновидности матриц. Например, MVA/PVA. Они обладают быстрым откликом, широким углом обзора и замечательной цветопередачей.

Устройства с экраном мультитач

В последнее время большую популярность завоевали электронные приборы с сенсорным управлением. Причем это не только смартфоны. Выпускают ноутбуки, планшеты, у которых сенсорный экран IPS, служащий для управления файлами, изображениями. Такие устройства незаменимы для работы с видео, фотографиями. В зависимости от встречаются компактные и полноформатные устройства. мультитач способен распознавать одновременно десять касаний, то есть на таком мониторе можно работать сразу двумя руками. Небольшие мобильные устройства, например смартфоны или планшеты с диагональю в семь дюймов, распознают пять касаний. Этого вполне достаточно, если у вашего смартфона небольшой IPS-экран. Что это очень удобно, оценили многие покупатели компактных устройств.

Технология LCD TFT матриц предусматривает использование в производстве жидкокристаллических дисплеев специальных тонкопленочных транзисторов. Само название TFT – это сокращение от Thin-film transistor, что в переводе и означает – тонкопленочный транзистор. Такой вид матриц применяет в самых разнообразных устройствах, от калькуляторов, до дисплеев смартфонов.

Наверное, каждый слышал понятия TFT и LCD, но мало кто задумывался, что это такое, из-за чего у непросвещенных людей возникает вопрос, чем отличается TFT от LCD? Ответ на этот вопрос заключается в том, что это две разные вещи, которые не стоит сравнивать. Чтобы понять, в чем разница между этими технологиями, стоит разобрать, что такое LCD, и что такое TFT.

1. Что такое LCD

LCD – это технология изготовления экранов телевизоров, мониторов и других устройств, основанная на использовании специальных молекул, которые называются – жидкие кристаллы. Эти молекулы имеют уникальные свойства, они постоянно находятся в жидком состоянии и способны менять свое положение при воздействии на них электромагнитного поля. Кроме этого, эти молекулы имеют оптические свойства, схожие со свойствами кристаллов, из-за чего эти молекулы и получили свое название.

В свою очередь экраны LCD могут иметь разные типы матриц, которые в зависимости от технологии изготовления имеют различные свойства и показатели.

2. Что такое TFT

Как уже говорилось, TFT – это технология изготовления LCD дисплеев, которая подразумевает использование тонкопленочных транзисторов. Таким образом, можно сказать, что TFT – это подвид LCD мониторов. Стоит отметить, что все современные LCD телевизоры, мониторы и экраны телефонов относятся к виду TFT. Поэтому вопрос, что лучше TFT или LCD не совсем правильный. Ведь отличие FTF от LCD заключается в том, что LCD – это технология изготовления жидкокристаллических экранов, а TFT – это подвид ЖК дисплеев, к которому относятся все типы активных матриц.

Среди пользователей TFT матрицы имеют название – активные. Такие матрицы обладают существенно более высоким быстродействием, в отличие от пассивных ЖК-матриц. Помимо этого, тип экрана LCD TFT отличается повышенным уровнем четкости, контрастности изображения и большими углами обзоров. Еще один важный момент заключается в том, что мерцание в активных матрицах отсутствует, что означает, что за такими мониторами приятнее работать, глаза при этом меньше устают.

Каждый пиксель матрицы TFT оснащен тремя отдельными управляющими транзисторами, благодаря чему достигается значительно более высокая частота обновления экрана, в сравнении с пассивными матрицами. Таким образом, в состав каждого пикселя входит три цветные ячейки, которые управляются соответствующим транзистором. Например, если разрешение экрана составляет 1920х1080 пикселей, то количество транзисторов в таком мониторе будет равно 5760х3240. Применение такого количества транзисторов стало возможным благодаря сверхтонкой и прозрачной структуре – 0,1- 0,01 микрон.

3. Виды матриц TFT экранов

На сегодняшний день, благодаря целому ряду преимуществ, TFT дисплеи используются в самых разнообразных устройствах.

Все известные ЖК телевизоры, которые имеются на российском рынке, оснащены TFT дисплеями. Они могут различаться своими параметрами в зависимости от используемой матрицы.

На данный момент наиболее распространенными матрицами TFT дисплеев являются:

Каждый из представленных видов матриц обладает своими преимуществами и недостатками.

3.1. Тип ЖК матрицы TFT TN

TN – это самый распространенный тип экрана LCD TFT. Такую популярность данный тип матрицы получил благодаря уникальным особенностям. При своей низкой стоимости, они имеют достаточно высокие показатели, причем в некоторых моментах, такие экраны TN даже имеют преимущества перед другими типами матриц.

Главная особенность – это быстрый отклик. Это параметр, который обозначает время, за которое пиксель способен отреагировать на изменение электрического поля. То есть, время, которое необходимо для полного изменение цвета (от белого к черному). Это очень важный показатель для любого телевизора и монитора, в особенности для любителей игр и фильмов, насыщенных всевозможными спецэффектами.

Недостатком данной технологии является ограниченные углы обзоров. Однако современные технологии позволили исправить этот недостаток. Сейчас матрицы TN+Film имеют большие углы обзоров, благодаря чему такие экраны способны конкурировать с новыми IPS матрицами.

3.2. IPS матрицы

Данный вид матриц имеет наибольшие перспективы. Особенность данной технологии состоит в том, что такие матрицы имеют самые большие углы обзоров, а также наиболее естественную и насыщенную цветопередачу. Однако недостатком этой технологии до сегодняшнего дня был длительный отклик. Но благодаря современным технологиям этот параметр удалось сократить до приемлемых показаний. Более того, нынешние мониторы c IPS матрицами имеют время отклика 5 мс, что не уступает даже TN+Film матрицам.

По мнению большинства изготовителей мониторов и телевизоров, будущее лежит именно за IPS матрицами, благодаря чему они постепенно вытесняют TN+Film.

Кроме этого, производители мобильных телефонов, смартфонов, планшетных ПК и ноутбуков все чаще выбирают TFT LCD модули с матрицами IPS, обращая внимание на отличную цветопередачу, хорошие углы обзора, а также экономичное потребление энергии, что крайне важно для мобильных устройств.

3.3. MVA/PVA

Данный тип матриц – это некий компромисс между TN и IPS матрицами. Ее особенность заключается в том, что в спокойном состоянии молекулы жидких кристаллов располагаются перпендикулярно плоскости экрана. Благодаря этому производители смогли достичь максимально глубокого и чистого черного цвета. Кроме этого данная технология позволяет достичь больших углов обзора, в сравнении с TN матрицами. Достигается это с помощью специальных выступов на обкладках. Эти выступы определяют направление молекул жидких кристаллов. При этом стоит отметить, что такие матрицы имеют меньшее время отклика, нежели IPS-дисплеи, и большее, в сравнении с TN матрицами.

Как ни странно, но данная технология не нашла широкого применения в массовом производстве мониторов и телевизоров.

4. Что лучше Super LCD или TFT

Для начала стоит разобрать, что такое Super LCD.

Super LCD – это технология производства экранов, которая широко распространена среди производителей современных смартфонов и планшетных ПК. По сути, Super LCD – это те же IPS матрицы, которые получили новое маркетинговое название и некоторые улучшения.

Главное отличие таких матриц заключается в том, что они не имеют воздушного зазора между наружным стеклом и картинкой (изображением). Благодаря этому удалось достичь уменьшения бликов. Кроме этого визуально изображение на таких дисплеях кажется ближе к зрителю. Если говорить о сенсорных дисплеях на смартфонах и планшетных ПК, то экраны Super LCD более чувствительны к прикосновениям и быстрее реагируют на движения.

5. TFT / LCD монитор: Видео

Еще одно преимущество данного типа матриц заключается в пониженном потреблении энергии, что опять же крайне важно в случае автономного устройства, такого как ноутбук, смартфон и планшет. Такая экономичность достигается благодаря тому, что в спокойном состоянии жидкие кристаллы расположены так, чтобы пропускать свет, что снижает потребление энергии при отображении светлых картинок. При этом стоит отметить, что подавляющее большинство фоновых картинок на всех интернет сайтах, заставках в приложениях и так далее, являются как раз таки светлыми.

Главной областью применения SL CD дисплеев является именно мобильная техника, благодаря низкому потреблению энергии, высокому качеству изображения, даже при прямых солнечных лучах, а также более низкой стоимости, в отличии, к примеру, от AMOLED экранов.

В свою очередь LCD TFT дисплеи включают в себя тип матрицы SLCD. Таким образом, Super LCD – это тип активной матрицы TFT дисплея. В самом начале данной публикации мы уже говорили о том, что TFT и LCD разницы не имеют, это в принципе одно и то же.

6. Выбор дисплея

Как уже говорилось выше, каждый из типов матриц обладает своими преимуществами и недостатками. Все они также уже оговаривались. В первую очередь при выборе дисплея, стоит учитывать ваши требования. Стоит задать себе вопрос, - Что именно нужно от дисплея, как он будет использоваться и в каких условиях?

Отталкиваясь от требований, и стоит выбирать дисплей. К сожалению, на данный момент не существует универсального экрана, на который можно было бы сказать, что он действительно лучше всех остальных. Из-за этого, если вам важна цветопередача, и вы собираетесь работать с фотографиями, то однозначно ваш выбор – это IPS матрицы. Но если вы заядлый любитель остросюжетных и ярких игр, то предпочтение все же лучше отдать TN+Film.

Все современные матрицы имеют достаточно высокие показатели, поэтому простые пользователи разницу могут даже не заметить, ведь IPS матрицы практически не уступают TN по времени отклика, а TN в свою очередь имеют довольно большие углы обзора. К тому же, как правило, пользователь располагается напротив экрана, а не сбоку или сверху, из-за чего большие углы в принципе не требуются. Но выбор все же за вами.

Модуль поиска не установлен.

Жидкокристаллические дисплеи(технологии TN, TN+Film и TFT)

Сергей Ярошенко

Непрерывно возрастающее количество пользователей меняют свои ЭЛТ-мониторы на LCD. Если для 19-дюймовых ЭЛТ-мониторов значительный размер корпуса, комфортно не помещавшийся на офисный стол, привел к фатальным последствиям, то снижение цены и минимальные размеры 19-дюймовых LCD-собратьев сегодня повышают их привлекательность.

Принцип работы LCD-мониторов (Liquid Crystal Display - жидкокристаллический дисплей) основан на использовании вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда назвали "жидкими кристаллами".

Происхождение LCD-мониторов

Жидкокристаллические материалы были открыты в 1888 году австрийским ученым Ф. Ренитцером, но только в 1930-м исследователи из британской корпорации Marconi получили патент на их промышленное применение. Дальше патента дело не пошло, поскольку в то время технологическая база была еще слишком слаба для создания надежных и функциональных устройств. Первый прорыв совершили ученые Фергесон и Вильямс из корпорации RCA (Radio Corporation of America). Один из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, другой изучал воздействие электрического поля на нематические кристаллы. В результате, в конце 1966 года, корпорация RCA продемонстрировала цифровые часы с LCD-прототипом.

Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Именно этой корпорацией:

В 1964 году был произведен первый в мире калькулятор CS10A;
- в 1975 году по технологии TN LCD были изготовлены первые компактные цифровые часы;
- в 1976 году был выпущен черно-белый телевизор с диагональю экрана 5,5 дюйма на базе LCD-матрицы с разрешением 160х120 пикселей.

Принцип работы LCD-дисплеев

Молекулы жидких кристаллов под воздействием электричества могут изменять свою ориентацию, и вследствие этого, изменять свойства светового луча, проходящего сквозь них.

Экран LCD-монитора представляет собой массив сегментов (пикселей), которыми можно манипулировать для отображения информации. Дисплей имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка. Между панелями находится тонкий слой жидких кристаллов. На панелях имеются бороздки, которые направляют кристаллы, придавая им нужную ориентацию. На каждой панели бороздки параллельны, а между панелями перпендикулярны. Продольные бороздки образуются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы жидких кристаллов принимают одинаковую ориентацию. Стеклянные панели расположены очень близко друг к другу. Они освещаются источником света (в зависимости от того, где он расположен, LCD-дисплеи работают на отражение или на прохождение света). При прохождении панели плоскость поляризации светового луча поворачивается на 90°. Появление электрического тока заставляет молекулы жидких кристаллов выстраиваться вдоль электрического поля, а угол поворота плоскости поляризации света становится отличным от 90°.

Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникает необходимость добавить к стеклянным панелям еще два слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному направлению поляризации. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, т.к. первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем.

В присутствии электрического поля поворот вектора поляризации происходит на меньший угол, тем самым второй поляризатор становится только частично прозрачным для света. Если разность потенциалов будет такова, что поворота плоскости поляризации в жидких кристаллах не произойдет, то световой луч будет полностью поглощен вторым поляризатором, а дисплей будет казаться черным.

Расположив большое число электродов, создающих электрические поля в локальных местах дисплея (ячейки), получим возможность (при правильном управлении потенциалами этих электродов) отображать на экране буквы и другие элементы изображения. Технологические новшества позволили ограничить размеры электродов до точки, соответственно, на одной и той же площади панели стало возможным расположить большее число электродов, что увеличивало разрешение LCD-монитора и позволяло отображать сложные изображения в цвете.

Для формирования цветного изображения LCD-дисплей подсвечивали сзади. Цвет получался в результате использования трех фильтров, которые выделяли из белого света три основные компоненты. Комбинируя эти компоненты для каждой точки (пикселя) дисплея, появилась возможность воспроизвести любой цвет.

Пассивная (passive matrix) и активная матрицы (active matrix)

Функциональные возможности LCD-мониторов с активной матрицей почти такие же, как у дисплеев с пассивной матрицей. Разница заключается в матрице электродов, которая управляет ячейками жидких кристаллов дисплея.

В случае с пассивной матрицей электроды получают электрический заряд циклическим методом при построчном обновлении дисплея. В результате разряда емкостей ячеек изображение исчезает, т. к. кристаллы возвращаются к своей изначальной конфигурации. Из-за большой электрической емкости ячеек напряжение на них не способно изменяться быстро, поэтому обновление картинки происходит медленно.

В случае с активной матрицей к каждому электроду добавлен запоминающий транзистор, который может хранить цифровую информацию (0 или 1), и в результате изображение сохраняется только до тех пор, пока не поступит другой сигнал.

Тусклые и "тормозные" жидкокристаллические мониторы с пассивной матрицей давно ушли в прошлое, в магазинах можно встретить лишь модели на основе активной матрицы, обеспечивающей яркое, четкое изображение.

При использовании активных матриц появилась возможность сократить число жидкокристаллических слоев. Запоминающие транзисторы производят из прозрачных материалов, что позволяет световому лучу проходить сквозь них, а значит, транзисторы можно располагать на тыльной части дисплея, на стеклянной панели, которая содержит жидкие кристаллы. Для этих целей используются пластиковые пленки - Thin Film Transistor (TFT).

Технология изготовления TN

Исторически первой технологией изготовления LCD-дисплеев была т.н. технология Twisted Nematic (TN). Название произошло из-за того, что в выключенном состоянии кристаллы в ячейках образовывали спираль. Эффект возникал в результате размещения кристаллов между выравнивающими панелями с бороздками, направленными перпендикулярно друг другу. При приложении электрического поля все кристаллы выстраивались одинаково, т.е. спираль распрямлялась, а при снятии кристаллы вновь стремились ориентироваться вдоль бороздок.

У TN-дисплеев было несколько существенных недостатков:

Во-первых, естественным состоянием дисплея, когда кристаллы образуют спираль, было прозрачное, т.е. она пропускала свет. Благодаря этому, при выходе из строя одного из тонкопленочных транзисторов свет беспрепятственно выходил наружу, образуя весьма заметную постоянно горящую точку;
- во-вторых, развернуть все жидкие кристаллы перпендикулярно фильтру оказалось практически невозможно, поэтому контрастность таких дисплеев оставляла желать лучшего, а уровень черного мог превышать 2 кд/м2 . Такой цвет выглядел как темно-серый, но отнюдь не как черный;
- в-третьих, низкая скорость реакции, первые дисплеи имели время отклика около 50 мс. Впрочем, второй и третий недостатки удалось преодолеть с внедрением технологии Super Twisted Nematic (STN), которая позволила уменьшить время отклика до 30 мс.
- в-четвертых, маленькие углы обзора, всего около 90°. Однако нанесение на поверхность экрана полимерной пленки с большим показателем преломления позволило расширить углы обзора до 120-160° без существенного изменения технологии. Такие дисплеи получили название TN+Film.

Технология изготовления STN

Технология STN позволяла увеличить торсионный угол (угол кручения) ориентации кристаллов внутри LCD с 90° до 270°, что обеспечивало лучшую контрастность изображения при увеличении размеров панели.

Режим DSTN. Часто STN-ячейки использовались в паре. Такая конструкция называлась Double Super Twisted Nematic (DSTN). В ней одна двухслойная DSTN-ячейка состояла из 2 STN-ячеек, молекулы, которых при работе поворачивались в противоположные стороны. Свет, проходя через такую конструкцию в "запертом" состоянии, терял большую часть своей энергии. Контрастность и разрешающая способность DSTN-дисплеев повысилась, поэтому появилась возможность изготовить цветной дисплей, в котором на каждый пиксель приходилось три LCD-ячейки и три оптических фильтра основных цветов. Цветные дисплеи не были способны работать от отраженного света, поэтому лампа задней подсветки - их обязательный атрибут.


Создание жидкокристаллического дисплея

Первый рабочий жидкокристаллический дисплей был создан Фергесоном (Fergason) в 1970 году. До этого жидкокристаллические устройства потребляли слишком много энергии, срок их службы был ограничен, а контраст изображения был удручающим. На суд общественности новый ЖК-дисплей был представлен в 1971 году и тогда он получил горячее одобрение. Жидкие кристаллы (Liquid Crystal) - это органические вещества, способные под напряжением изменять величину пропускаемого света. Жидкокристаллический монитор представляет собой две стеклянных или пластиковых пластины, между которыми находится суспензия. Кристаллы в этой суспензии расположены параллельно по отношению друг к другу, тем самым они позволяют свету проникать через панель. При подаче электрического тока расположение кристаллов изменяется, и они начинают препятствовать прохождению света. ЖК технология получила широкое распространение в компьютерах и в проекционном оборудовании. Первые жидкие кристаллы отличались своей нестабильностью и были мало пригодными к массовому производству. Реальное развитие ЖК технологии началось с изобретением английскими учеными стабильного жидкого кристалла - бифенила (Biphenyl). Жидкокристаллические дисплеи первого поколения можно наблюдать в калькуляторах, электронных играх и в часах. Современные ЖК мониторы также называют плоскими панелями, активными матрицами двойного сканирования, тонкопленочными транзисторами. Идея ЖК мониторов витала в воздухе более 30 лет, но проводившиеся исследования не приводили к приемлемому результату, поэтому ЖК мониторы не завоевали репутации устройств, обеспечивающих хорошее качество изображения. Сейчас они становятся популярными - всем нравится их изящный вид, тонкий стан, компактность, экономичность (15-30 ватт), кроме того, считается, что только обеспеченные и серьезные люди могут позволить себе такую роскошь

Характеристики ЖК мониторов

Виды ЖК мониторов

Составные слои монитора

Существует два вида ЖК мониторов: DSTN (dual-scan twisted nematic - кристаллические экраны с двойным сканированием) и TFT (thin film transistor - на тонкопленочных транзисторах), также их называют соответственно пассивными и активными матрицами. Такие мониторы состоят из следующих слоев: поляризующего фильтра, стеклянного слоя, электрода, слоя управления, жидких кристаллов, ещё одного слоя управления, электрода, слоя стекла и поляризующего фильтра. В первых компьютерах использовались восьмидюймовые (по диагонали) пассивные черно-белые матрицы. С переходом на технологию активных матриц, размер экрана вырос. Практически все современные ЖК мониторы используют панели на тонкопленочных транзисторах, обеспечивающих яркое, четкое изображение значительно большего размера.

Разрешение монитора

От размера монитора зависят и занимаемое им рабочее пространство, и, что немаловажно, его цена. Несмотря на устоявшуюся классификацию ЖК-мониторов в зависимости от размера экрана по диагонали (15-, 17-, 19-дюймовые), более корректной является классификация по рабочему разрешению. Дело в том, что, в отличие от мониторов на основе ЭЛТ, разрешение которых можно менять достаточно гибко, ЖК-дисплеи имеют фиксированный набор физических пикселей. Именно поэтому они рассчитаны на работу только с одним разрешением, называемым рабочим. Косвенно это разрешение определяет и размер диагонали матрицы, однако мониторы с одинаковым рабочим разрешением могут иметь разную по размерам матрицу. Например, мониторы с диагональю от 15 до 16 дюймов в основном имеют рабочее разрешение 1024Ѕ768, а это означает, что у данного монитора действительно физически содержится 1024 пикселя по горизонтали и 768 пикселей по вертикали. Рабочее разрешение монитора определяет размер иконок и шрифтов, которые будут отображаться на экране. К примеру, 15-дюймовый монитор может иметь рабочее разрешение и 1024Ѕ768, и 1400Ѕ1050 пикселей. В последнем случае физические размеры самих пикселей будут меньшими, а поскольку при формировании стандартной иконки в обоих случаях используется одно и то же количество пикселей, то при разрешении 1400Ѕ1050 пикселей иконка по своим физическим размерам окажется меньше. Для некоторых пользователей слишком маленькие размеры иконок при высоком разрешении монитора могут оказаться неприемлемыми, поэтому при покупке монитора нужно сразу обращать внимание на рабочее разрешение. Конечно же, монитор способен выводить изображение и в другом, отличном от рабочего разрешении. Такой режим работы монитора называют интерполяцией. В случае интерполяции качество изображения оставляет желать лучшего. Режим интерполяции заметно сказывается на качестве отображения экранных шрифтов.

Интерфейс монитора

ЖК-мониторы по своей природе являются цифровыми устройствами, поэтому «родным» интерфейсом для них считается цифровой интерфейс DVI, который может обладать двумя видами конвекторов: DVI-I, совмещающим цифровой и аналоговый сигналы, и DVI-D, передающим только цифровой сигнал. Считается, что для соединения ЖК-монитора с компьютером более предпочтителен интерфейс DVI, хотя допускается подключение и через стандартный D-Sub-разъем. В пользу DVI-интерфейса говорит и то, что в случае аналогового интерфейса происходит двойное преобразование видеосигнала: сначала цифровой сигнал преобразуется в аналоговый в видеокарте (ЦАП-преобразование), который затем трансформируется в цифровой электронным блоком самого ЖК-монитора (АЦП-преобразование), вследствие чего возрастает риск различных искажений сигнала. Многие современные ЖК-мониторы обладают как D-Sub-, так и DVI-коннекторами, что позволяет одновременно подключать к монитору два системных блока. Также можно найти модели, имеющие два цифровых разъема. В недорогих офисных моделях в основном присутствует только стандартный D-Sub-разъем.

Тип ЖК матрицы

Базовым компонентом ЖК-матрицы являются жидкие кристаллы. Существует три основных типа жидких кристаллов: смектические, нематические и холестерические. По электрическим свойствам все жидкие кристаллы делятся на две основные группы: к первой относятся жидкие кристаллы с положительной диэлектрической анизотропией, ко второй - с отрицательной диэлектрической анизотропией. Разница заключается в том, как эти молекулы реагируют на внешнее электрическое поле. Молекулы с положительной диэлектрической анизотропией ориентируются вдоль силовых линий поля, а молекулы с отрицательной диэлектрической анизотропией - перпендикулярно силовым линиям. Нематические жидкие кристаллы обладают положительной диэлектрической анизотропией, а смектические, наоборот, - отрицательной. Другое замечательное свойство ЖК-молекул заключается в их оптической анизотропии. В частности, если ориентация молекул совпадает с направлением распространения плоскополяризованного света, то молекулы не оказывают никакого воздействия на плоскость поляризации света. Если же ориентация молекул перпендикулярна направлению распространения света, то плоскость поляризации поворачивается таким образом, чтобы быть параллельной направлению ориентации молекул. Диэлектрическая и оптическая анизотропия ЖК-молекул дает возможность использовать их в качестве своеобразных модуляторов света, позволяющих формировать требуемое изображение на экране. Принцип действия такого модулятора довольно прост и основан на изменении плоскости поляризации проходящего через ЖК-ячейку света. ЖК-ячейка располагается между двумя поляризаторами, оси поляризации которых взаимно перпендикулярны. Первый поляризатор вырезает плоскополяризованное излучение из проходящего от лампы подсветки света. Если бы не было ЖК-ячейки, то такой плоскополяризованный свет полностью поглотился бы вторым поляризатором. ЖК-ячейка, размещенная на пути проходящего плоскополяризованного света, может поворачивать плоскость поляризации проходящего света. В таком случае часть света проходит через второй поляризатор, то есть ячейка становится прозрачной (полностью или частично). В зависимости от того, каким образом осуществляется управление поворотом плоскости поляризации в ЖК-ячейке, различают несколько типов ЖК-матриц. Итак, ЖК-ячейка, помещаемая между двумя скрещенными поляризаторами, позволяет модулировать проходящее излучение, создавая градации черно-белого цвета. Для получения цветного изображения необходимо применение трех цветных фильтров: красного (R), зеленого (G) и голубого (B), которые, будучи установленными на пути распространения белого цвета, позволят получить три базовых цвета в нужных пропорциях. Итак, каждый пиксель ЖК-монитора состоит из трех отдельных субпикселов: красного, зеленого и голубого, представляющих собой управляемые ЖК-ячейки и различающихся только используемыми фильтрами, установленными между верхней стеклянной пластиной и выходным поляризующим фильтром

Классификация TFT-LCD дисплеев

Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS (SFT) и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода. Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, применённый в конкретных разработках.

TN-матрица

Структура TN-ячейки

Жидкокристаллическая матрица TN-типа (Twisted Nematic) представляет собой многослойную структуру, состоящую из двух поляризующих фильтров, двух прозрачных электродов и двух стеклянных пластинок, между которыми располагается собственно жидкокристаллическое вещество нематического типа с положительной диэлектрической анизотропией. На поверхность стеклянных пластин наносятся специальные бороздки, что позволяет создать первоначально одинаковую ориентацию всех молекул жидких кристаллов вдоль пластины. Бороздки на обеих пластинах взаимно перпендикулярны, поэтому слой молекул жидких кристаллов между пластинами изменяет свою ориентацию на 90°. Получается, что ЖК-молекулы образуют скрученную по спирали структуру (рис. 3), из-за чего такие матрицы и получили название Twisted Nematic. Стеклянные пластины с бороздками располагаются между двух поляризационных фильтров, причем ось поляризации в каждом фильтре совпадает с направлением бороздок на пластине. В обычном состоянии ЖК-ячейка является открытой, поскольку жидкие кристаллы поворачивают плоскость поляризации проходящего через них света. Поэтому плоскополяризованное излучение, образующееся после прохождения первого поляризатора, пройдет и через второй поляризатор, так как ось его поляризации будет параллельна направлению поляризации падающего излучения. Под воздействием электрического поля, создаваемого прозрачными электродами, молекулы жидкокристаллического слоя меняют свою пространственную ориентацию, выстраиваясь вдоль направления силовых линий поля. В этом случае жидкокристаллический слой теряет способность поворачивать плоскость поляризации падающего света, и система становится оптически непрозрачной, так как весь свет поглощается выходным поляризующим фильтром. В зависимости от приложенного напряжения между управляющими электродами можно менять ориентацию молекул вдоль по полю не полностью, а лишь частично, то есть регулировать степень скрученности ЖК-молекул. Это, в свою очередь, позволяет менять интенсивность света, проходящего через ЖК-ячейку. Таким образом, установив лампу подсветки позади ЖК-матрицы и меняя напряжение между электродами, можно варьировать степень прозрачность одной ЖК-ячейки. TN-матрицы являются наиболее распространенными и дешевыми. Им свойственны определенные недостатки: не очень большие углы обзора, невысокая контрастность и невозможность получить идеальный черный цвет. Дело в том, что даже при приложении максимального напряжения к ячейке невозможно до конца раскрутить ЖК-молекулы и сориентировать их вдоль силовых линий поля. Поэтому такие матрицы даже при полностью выключенном пикселе остаются слегка прозрачными. Второй недостаток связан с небольшими углами обзора. Для частичного его устранения на поверхность монитора наносится специальная рассеивающая пленка, что позволяет увеличить угол обзора. Данная технология получила название TN+Film, что указывает на наличие этой пленки. Узнать, какой именно тип матрицы применяется в мониторе, не так-то просто. Однако если на мониторе имеется «битый» пиксель, возникший вследствие выхода из строя управляющего ЖК-ячейкой транзистора, то в TN-матрицах он всегда будет ярко гореть (красным, зеленым или синим цветом), поскольку для TN-матрицы открытый пиксель соответствует отсутствию напряжения на ячейке. Распознать TN-матрицу можно и посмотрев на черный цвет при максимальной яркости - если он скорее серый, чем черный, то это, вероятно, именно TN-матрица.

IPS-матрицы

Структура IPS-ячейки

Мониторы с IPS-матрицей называют также Super TFT-мониторами. Отличительной особенностью IPS-матриц является то, что управляющие электроды расположены в них в одной плоскости на нижней стороне ЖК-ячейки. При отсутствии напряжения между электродами ЖК-молекулы расположены параллельно друг другу, электродам и направлению поляризации нижнего поляризующего фильтра. В этом состоянии они не влияют на угол поляризации проходящего света, и свет полностью поглощается выходным поляризующим фильтром, поскольку направления поляризации фильтров перпендикулярны друг другу. При подаче напряжения на управляющие электроды создаваемое электрическое поле поворачивает ЖК-молекулы на 90° так, что они ориентируются вдоль силовых линий поля. Если через такую ячейку пропустить свет, то за счет поворота плоскости поляризации верхний поляризующий фильтр пропустит свет без помех, то есть ячейка окажется в открытом состоянии (рис. 4). Варьируя напряжение между электродами, можно заставлять ЖК-молекулы поворачиваться на любой угол, меняя тем самым прозрачность ячейки. Во всем остальном IPS-ячейки подобны TN-матрицам: цветное изображение также формируется за счет использования трех цветовых фильтров. IPS-матрицы имеют как преимущества, так и недостатки по сравнению с TN-матрицами. Преимуществом является тот факт, что в данном случае получается идеально черный цвет, а не серый, как в TN-матрицах. Другим неоспоримым преимуществом данной технологии являются большие углы обзора. К недостаткам IPS-матриц стоит отнести большее, чем для TN-матриц, время реакции пикселя. Впрочем, к вопросу о времени реакции пикселя мы еще вернемся. В заключение отметим, что существуют различные модификации IPS-матриц (Super IPS, Dual Domain IPS), позволяющие улучшить их характеристики.

MVA-матрицы

Доменная структура MVA-ячейки

MVA является развитием технологии VA, то есть технологии с вертикальным упорядочиванием молекул. В отличие от TN- и IPS-матриц, в данном случае используются жидкие кристаллы с отрицательной диэлектрической анизотропией, которые ориентируются перпендикулярно к направлению линий электрического поля. В отсутствие напряжения между обкладками ЖК-ячейки все жидкокристаллические молекулы ориентированы вертикально и не оказывают никакого влияния на плоскость поляризации проходящего света. Поскольку свет проходит через два скрещенных поляризатора, он полностью поглощается вторым поляризатором и ячейка оказывается в закрытом состоянии, при этом, в отличие от TN-матрицы, возможно получение идеально черного цвета. Если к электродам, расположенным сверху и снизу, прикладывается напряжение, молекулы поворачиваются на 90°, ориентируясь перпендикулярно к линиям электрического поля. При прохождении плоскополяризованного света через такую структуру плоскость поляризации поворачивается на 90° и свет свободно походит через выходной поляризатор, то есть ЖК-ячейка оказывается в открытом состоянии. Достоинствами систем с вертикальным упорядочиванием молекул являются возможность получения идеально черного цвета (что, в свою очередь, сказывается на возможности получения высококонтрастных изображений) и малое время реакции пикселя. С целью увеличения углов обзора в системах с вертикальным упорядочиванием молекул используется мультидоменная структура, что и приводит к созданию матриц типа MVA. Смысл этой технологии заключается в том, что каждый субпиксел разбивается на несколько зон (доменов) с использованием специальных выступов, которые несколько меняют ориентацию молекул, заставляя их выравниваться по поверхности выступа. Это приводит к тому, что каждый такой домен светит в своем направлении (в пределах некоторого телесного угла), а совокупность всех направлений расширяет угол обзора монитора. К достоинствам MVA-матриц следует отнести высокую контрастность (благодаря возможности получения идеально черного цвета) и большие углы обзора (вплоть до 170°). В настоящее время существует несколько разновидностей технологии MVA, например PVA (Patterned Vertical Alignment) компании Samsung, MVA-Premium и др., которые в еще большей степени повышают характеристики MVA-матриц.

Яркость

Сегодня в ЖК-мониторах максимальная яркость, заявляемая в технической документации, составляет от 250 до 500 кд/м2. И если яркость монитора достаточна высока, то это обязательно указывается в рекламных буклетах и преподносится как одно из основных преимуществ монитора. Впрочем, как раз в этом кроется один из подводных камней. Парадокс заключается в том, что ориентироваться на цифры, указанные в технической документации, нельзя. Это касается не только яркости, но и контраста, углов обзора и времени реакции пикселя. Мало того, что они могут вовсе не соответствовать реально наблюдаемым значениям, иногда вообще трудно понять, что означают эти цифры. Прежде всего, существуют разные методики измерения, описанные в различных стандартах; соответственно измерения, проводимые по разным методикам, дают различные результаты, причем вы вряд ли сможете выяснить, по какой именно методике и как проводились измерения. Вот один простой пример. Измеряемая яркость зависит от цветовой температуры, но когда говорят, что яркость монитора составляет 300 кд/м2, то возникает вопрос: при какой цветовой температуре достигается эта самая максимальная яркость? Более того, производители указывают яркость не для монитора, а для ЖК-матрицы, что совсем не одно и то же. Для измерения яркости используются специальные эталонные сигналы генераторов с точно заданной цветовой температурой, поэтому характеристики самого монитора как конечного изделия могут существенно отличаться от заявленных в технической документации. А ведь для пользователя первостепенное значение имеют характеристики собственно монитора, а не матрицы. Яркость является для ЖК-монитора действительно важной характеристикой. К примеру, при недостаточной яркости вы вряд ли сможете играть в различные игры или просматривать DVD-фильмы. Кроме того, окажется некомфортной работа за монитором в условиях дневного освещения (внешней засветки). Однако делать на этом основании вывод, что монитор с заявленной яркостью 450 кд/м2 чем-то лучше монитора с яркостью 350 кд/м2, было бы преждевременно. Во-первых, как уже отмечалось, заявленная и реальная яркость - это не одно и то же, а во-вторых, вполне достаточно, чтобы ЖК-монитор имел яркость 200-250 кд/м2 (но не заявленную, а реально наблюдаемую). Кроме того, немаловажное значение имеет и тот факт, каким образом регулируется яркость монитора. С точки зрения физики регулировка яркости может производиться путем изменения яркости ламп подсветки. Это достигается либо за счет регулировки тока разряда в лампе (в мониторах в качестве ламп подсветки используются лампы дневного света с холодным катодом Cold Cathode Fluorescent Lamp, CCFL), либо за счет так называемой широтно-импульсной модуляции питания лампы. При широтно-импульсной модуляции напряжение на лампу подсветки подается импульсами определенной длительности. В результате лампа подсветки светится не постоянно, а только в периодически повторяющиеся интервалы времени, но за счет инертности зрения создается впечатление, что лампа горит постоянно (частота следования импульсов составляет более 200 Гц). Очевидно, что, меняя ширину подаваемых импульсов напряжения, можно регулировать среднюю яркость свечения лампы подсветки. Кроме регулирования яркости монитора за счет лампы подсветки, иногда это регулировка осуществляется самой матрицей. Фактически, к управляющему напряжению на электродах ЖК-ячейки добавляется постоянная составляющая. Это позволяет полностью открывать ЖК-ячейку, но не позволяет полностью ее закрывать. В этом случае при увеличении яркости черный цвет перестает быть черным (матрица становится частично прозрачной даже при закрытой ЖК-ячейке).

Контрастность

Не менее важной характеристикой ЖК-монитора является его контрастность, которая определяется как отношение яркости белого фона к яркости черного фона. Теоретически контрастность монитора не должна зависеть от установленного на мониторе уровня яркости, то есть при любом уровне яркости измеренный контраст должен иметь одно и то же значение. Действительно, яркость белого фона пропорциональна яркости лампы подсветки. В идеальном случае отношение коэффициентов пропускания света ЖК-ячейкой в открытом и закрытом состоянии является характеристикой самой ЖК-ячейки, однако на практике это отношение может зависеть и от установленной цветовой температуры, и от установленного уровня яркости монитора. За последнее время контрастность изображения на цифровых мониторах заметно выросла, и сейчас этот показатель нередко достигает значения 500:1. Но и здесь все не так просто. Дело в том, что контраст может указываться не для монитора, а для матрицы. Впрочем, как показывает опыт, если в паспорте указывается контраст более 350:1, то этого вполне достаточно для нормальной работы.

Угол обзора

Максимальный угол обзора (как по вертикали, так и по горизонтали) определяется как угол, при обзоре с которого контрастность изображения в центре составляет не менее 10:1. Некоторые производители матриц при определении углов обзора используют контрастность не 10:1, а 5:1, что также вносит некоторую путаницу в технические характеристики. Формальное определение углов обзора довольно туманно и, что самое главное, не имеет прямого отношения к правильности цветопередачи при просмотре изображения под углом. На самом деле для пользователей куда более важным обстоятельством является тот факт, что при просмотре изображения под углом к поверхности монитора происходит не падение контрастности, а цветовые искажения. К примеру, красный цвет превращается в желтый, а зеленый - в синий. Причем подобные искажения у разных моделей проявляются по-разному: у некоторых они становятся заметными уже при незначительном угле, много меньшем угла обзора. Поэтому сравнивать мониторы по углам обзора в принципе неправильно. Сравнить-то можно, но вот практического значения такое сравнение не имеет.

Время реакции пикселя

Типичная временная диаграмма включения пикселя для TN+Film-матрицы

Типичная временная диаграмма выключения пикселя для TN+Film-матрицы

Время реакции, или время отклика пикселя, как правило, указывается в технической документации на монитор и считается одной из важнейших характеристик монитора (что не совсем верно). В ЖК-мониторах время реакции пикселя, которое зависит от типа матрицы, измеряется десятками миллисекунд (в новых TN+Film-матрицах время реакции пикселя составляет 12 мс), а это приводит к смазанности меняющейся картинки и может быть заметно на глаз. Различают время включения и время выключения пикселя. Под временем включения пикселя понимается промежуток времени, необходимый для открытия ЖК-ячейки, а под временем выключения - промежуток времени, необходимый для ее закрытия. Когда же говорят о времени реакции пикселя, то понимают суммарное время включения и выключения пикселя. Время включения пикселя и время его выключения могут существенно различаться. Когда говорят о времени реакции пикселя, указываемом в технической документации на монитор, то имеют в виду время реакции именно матрицы, а не монитора. Кроме того, время реакции пикселя, указываемое в технической документации, различными производителями матриц трактуется по-разному. К примеру, один из вариантов трактовки времени включения (выключения) пикселя заключается в том, что это время изменения яркости пикселя от 10 до 90% (от 90 до 10%). До сих пор, говоря об измерении времени реакции пикселя, подразумевается, что речь идет о переключениях между черным и белым цветами. Если с черным цветом вопросов не возникает (пиксель просто закрыт), то выбор белого цвета не очевиден. Как будет меняться время реакции пикселя, если измерять его при переключении между различными полутонами? Этот вопрос имеет огромное практическое значение. Дело в том, что переключение с черного фона на белый или, наоборот, в реальных приложениях встречается сравнительно редко. В большинстве приложений реализуются, как правило, переходы между полутонами. И если время переключения между черным и белым цветами окажется меньше, чем время переключения между градациями серого, то никакого практического значения время реакции пикселя иметь не будет и ориентироваться на эту характеристику монитора нельзя. Какой же вывод можно сделать из вышеизложенного? Все очень просто: заявляемое производителем время реакции пикселя не позволяет однозначно судить о динамической характеристике монитора. Более правильно в этом смысле говорить не о времени переключения пикселя между белым и черным цветами, а о среднем времени переключения пикселя между полутонами.

Количество отображаемых цветов

Все мониторы по своей природе являются RGB-устройствами, то есть цвет в них получается за счет смешения в различных пропорциях трех базовых цветов: красного, зеленого и синего. Таким образом, каждый ЖК-пиксель состоит из трех цветных субпикселов. Кроме полностью закрытого или полностью открытого состояния ЖК-ячейки, возможны и промежуточные состояния, когда ЖК-ячейка частично открыта. Это позволяет формировать цветовой оттенок и смешивать цветовые оттенки базовых цветов в нужных пропорциях. При этом количество воспроизводимых монитором цветов теоретически зависит от того, сколько цветовых оттенков можно сформировать в каждом цветовом канале. Частичное открытие ЖК-ячейки достигается за счет подачи требуемого уровня напряжения на управляющие электроды. Поэтому количество воспроизводимых цветовых оттенков в каждом цветовом канале зависит от того, сколько различных уровней напряжений можно подавать на ЖК-ячейку. Для формирования произвольного уровня напряжения потребуется использование схем ЦАП с большой разрядностью, что крайне дорого. Поэтому в современных ЖК-мониторах чаще всего применяют 18-битные ЦАП и реже - 24-битные. При использовании 18-битной ЦАП на каждый цветовой канал приходится по 6 бит. Это позволяет сформировать 64 (26=64) различных уровня напряжения и соответственно получить 64 цветовых оттенка в одном цветовом канале. Всего же за счет смешения цветовых оттенков разных каналов возможно создание 262 144 цветовых оттенков. При использовании 24-битной матрицы (24-битная схема ЦАП) на каждый канал приходится по 8 бит, что позволяет сформировать уже 256 (28=256) цветовых оттенков в каждом канале, а всего такая матрица воспроизводит 16 777 216 цветовых оттенков. В то же время для многих 18-битных матриц в паспорте указывается, что они воспроизводят 16,2 млн. цветовых оттенков. В чем же тут дело и возможно ли такое? Оказывается, что в 18-битных матрицах за счет всяческих ухищрений можно приблизить количество цветовых оттенков к тому, что воспроизводится настоящими 24-битными матрицами. Для экстраполяции цветовых оттенков в 18-битных матрицах используются две технологии (и их комбинации): dithering (дизеринг) и FRC (Frame Rate Control). Суть технологии дизеринга заключается в том, что недостающие цветовые оттенки получают за счет смешения ближайших цветовых оттенков соседних пикселов. Рассмотрим простой пример. Предположим, что пиксель может находиться только в двух состояниях: открытом и закрытом, причем закрытое состояние пикселя формирует черный цвет, а открытое - красный. Если вместо одного пикселя рассмотреть группу из двух пикселов, то, кроме черного и красного, можно получить еще и промежуточный цвет, осуществив тем самым экстраполяцию от двухцветного режима к трехцветному. В результате если первоначально такой монитор мог генерировать шесть цветов (по два на каждый канал), то после такого дизеринга он будет воспроизводить уже 27 цветов. Схема дизеринга имеет один существенный недостаток: увеличение цветовых оттенков достигается за счет уменьшения разрешения. Фактически при этом увеличивается размер пикселя, что может негативно сказаться при прорисовке деталей изображения. Суть технологии FRC заключается в манипуляции яркостью отдельных субпикселов с помощью их дополнительного включения/выключения. Как и в предыдущем примере, считается, что пиксель может быть либо черным (выключен), либо красным (включен). Каждый субпиксел получает команду на включение с частотой кадровой развертки, то есть при частоте кадровой развертки 60 Гц каждый субпиксел получает команду на включение 60 раз в секунду. Это позволяет генерировать красный цвет. Если же принудительно заставлять включаться пиксель не 60 раз в секунду, а только 50 (на каждом 12-м такте производить не включение, а выключение пикселя), то в результате яркость пикселя составит 83% от максимальной, что позволит сформировать промежуточный цветовой оттенок красного. Оба рассмотренных метода экстраполяции цвета имеют свои недостатки. В первом случае - это возможное мерцание экрана и некоторое увеличение времени реакции, а во втором - вероятность потери деталей изображения. Отличить на глаз 18-битную матрицу с экстраполяцией цвета от истинной 24-битной довольно сложно. При этом стоимость 24-битной матрицы значительно выше.

Принцип действия TFT-LCD дисплеев

Общий принцип формирования изображения на экране хорошо иллюстрирует рис. 1. А вот как управлять яркостью отдельных субпикселей? Новичкам обычно объясняют так: за каждым субпикселем стоит жидкокристаллическая заслонка. В зависимости от приложенного к ней напряжения она пропускает больше или меньше света от задней лампы подсветки. И все сразу представляют себе некие заслонки на маленьких петельках, которые поворачиваются на нужный угол... примерно так:

На самом деле, конечно, всё гораздо сложнее. Нет никаких материальных заслонок на петлях. В реальной жидкокристаллической матрице световой поток управляется примерно так:

Свет от лампы подсветки (идём по картинке снизу вверх) первым делом проходит сквозь нижний поляризующий фильтр (белая заштрихованная пластина). Теперь это уже не обычный поток света, а поляризованный. Дальше свет проходит через полупрозрачные управляющие электроды (жёлтые пластинки) и встречает на своём пути слой жидких кристаллов. Изменением управляющего напряжения поляризацию светового потока можно менять на величину до 90 градусов (на картинке слева), или оставлять неизменной (там же справа). Внимание, начинается самое интересное! После слоя жидких кристаллов расположены светофильтры и тут каждый субпиксель окрашивается в нужный цвет – красный, зелёный или синий. Если посмотреть на экран, убрав верхний поляризующий фильтр – мы увидим миллионы светящихся субпикселей – и каждый светится с максимальной яркостью, ведь наши глаза не умеют различать поляризацию света. Иными словами, без верхнего поляризатора мы увидим просто равномерное белое свечение по всей поверхности экрана. Но стоит поставить верхний поляризующий фильтр на место – и он «проявит» все изменения, которые произвели с поляризацией света жидкие кристаллы. Некоторые субпиксели так и останутся ярко светящимися, как левый на рисунке, у которого поляризация была изменена на 90 градусов, а некоторые погаснут, ведь верхний поляризатор стоит в противофазе нижнему и не пропускает света с дефолтной (той, что по умолчанию) поляризацией. Есть и субпиксели с промежуточной яркостью – поляризация потока света, прошедшего через них, была развёрнута не на 90, а на меньшее число градусов, например, на 30 или 55 градусов.

Плюсы и минусы

Условные обозначения: (+) достоинство, (~) допустимо, (-) недостаток

ЖК-мониторы

ЭЛТ-мониторы

Яркость (+) от 170 до 250 Кд/м2 (~) от 80 до 120 Кд/м2
Контрастность (~) от 200:1 до 400:1 (+) от 350:1 до 700:1
Угол обзора (по контрасту) (~) от 110 до 170 градусов (+) свыше 150 градусов
Угол обзора (по цвету) (-) от 50 до 125 градусов (~) свыше 120 градусов
Разрешение (-) Одно разрешение с фиксированным размером пикселей. Оптимально можно использовать только в этом разрешении; в зависимости от поддерживаемых функций расширения или компрессии можно ис-пользовать более высокое или более низ-кое разрешение, но они не оптимальны. (+) Поддерживаются различные разреше-ния. При всех поддерживаемых разреше-ниях монитор можно использовать опти-мальным образом. Ограничение наклады-вается только приемлемостью частоты регенерации.
Частота вертикальной развертки (+) Оптимальная частота 60 Гц, чего дос-таточно для отсутствия мерцания (~) Только при частотах свыше 75 Гц от-сутствует явно заметное мерцание
Ошибки совмещения цветов (+) нет (~) от 0.0079 до 0.0118 дюйма (0.20 - 0.30 мм)
Фокусировка (+) очень хорошая (~) от удовлетворительной до очень хоро-шей>
Геометрические/линейные искажения (+) нет (~) возможны
Неработающие пиксе-ли (-) до 8 (+) нет
Входной сигнал (+) аналоговый или цифровой (~) только аналоговый
Масштабирование при разных разрешениях (-) отсутствует или используются методы интерполяции, не требующие больших накладных расходов (+) очень хорошее
Точность отображения цвета (~) Поддерживается True Color и имитиру-ется требуемая цветовая температура (+) Поддерживается True Color и при этом на рынке имеется масса устройств калиб-ровки цвета, что является несомненным плюсом
Гамма-коррекция (подстройка цвета под особенности человече-ского зрения) (~) удовлетворительная (+) фотореалистичная
Однородность (~) часто изображение ярче по краям (~) часто изображение ярче в центре
Чистота цвета/качество цвета (~) хорошее (+) высокое
Мерцание (+) нет (~) незаметно на частоте выше 85 Гц
Время инерции (-) от 20 до 30 мсек. (+) пренебрежительно мало
Формирование изображения (+) Изображение формируется пикселями, число которых зависят только от конкретного разрешения LCD панели. Шаг пикселей зависит только от размера самих пикселей, но не от расстояния между ними. Каждый пиксель формируется индивидуально, что обеспечивает великолепную фокусировку, ясность и четкость. Изображение получается более целостным и гладким (~) Пиксели формируются группой точек (триады) или полосок. Шаг точки или ли-нии зависит от расстояния между точками или линиями одного цвета. В результате четкость и ясность изображения сильно зависит от размера шага точки или шага линии и от качества ЭЛТ
Энергопотребление и излучения (+) Практически никаких опасных электромагнитных излучений нет. Уровень потребления энергии примерно на 70% ниже, чем у стандартных CRT мониторов (от 25 до 40 Вт). (-) Всегда присутствует электромагнитное излучение, однако их уровень зависит от того, соответствует ли ЭЛТ какому-либо стандарту безопасности. Потребление энергии в рабочем состоянии на уровне 60 - 150 Вт.
Размеры/вес (+) плоский дизайн, малый вес (-) тяжелая конструкция, занимает много места
Интерфейс монитора (+) Цифровой интерфейс, однако, большинство LCD мониторов имеют встроенный аналоговый интерфейс для подключения к наиболее распространенным аналоговым выходам видеоадаптеров (-) Аналоговый интерфейс

Литература

  • А.В.Петроченков “Hardware-компьютер и периферия “, -106стр.ил.
  • В.Э.Фигурнов “IBM PC для пользователя “, -67стр.
  • “HARD "n" SOFT “ (компьютерный журнал для широкого круга пользователей) №6 2003г.
  • Н.И.Гурин “Работа на персональном компьютере “,-128стр.

Представляет собой тонкое плоское устройство отображения, составленное из некоторого числа цветных или монохромных пикселей, расположенных перед источником света или зеркалом.

В чем преимущество ЖК-монитора? Его высоко ценят инженеры, потому что он потребляет незначительное количество электроэнергии, что делает его пригодным для использования в электронных устройствах, питающихся от батареек. Кроме того, он может иметь практически любую форму и размеры, мало нагревается и не выделяет вредного электромагнитного излучения.

Также он является одной из причин успеха портативных компьютеров - иначе они бы не были такими компактными. Некоторые из ранних моделей переносных ПК включали небольшой ЭЛТ-монитор и были довольно громоздкими. Впоследствии ЖК-дисплеи стали использоваться не только в ноутбуках, но и в телевизорах высокой четкости. Поскольку со временем технология и производство становятся более дешевыми, стоимость мониторов с плоским экраном или HD-телевизоров продолжала снижаться. В конечном итоге ЖК-панели полностью заменили традиционные электронно-лучевые трубки, так же, как транзисторы сменили вакуумные лампы.

Принцип работы ЖК-монитора

Пиксели дисплея состоят из ЖК-молекул, выстроенных между прозрачными электродами, а также из пары поляризационных фильтров с перпендикулярными друг другу осями полярностей. В отсутствие жидкого кристалла свет, проходя через один поляризатор, блокируется другим.

Поверхность электродов, контактирующих с веществом, находящимся в ЖК-фазе, обработана так, чтобы молекулы выстраивались в определенном направлении. Как правило, они покрываются тонким слоем полимера, направленного в одну сторону методом протирания его тканью (жидкие кристаллы выстраиваются в том же направлении).

Принцип работы ЖК-монитора следующий. До наложения электрического поля ЖК-молекулы выстроены согласно направлению выравнивания поверхностей. В наиболее распространенном типе ЖК-экрана - крученном нематическом - направления выстраивания поверхностей электродов перпендикулярны, благодаря чему молекулы образуют спиралевидную структуру, т. е. скручиваются. Так как свойством жидких кристаллов является разная скорость движения света с разной поляризацией, луч, который проходит через один поляризационный фильтр, вращается ЖК-спиралью так, что может пройти сквозь второй. При этом половина света поглощается в первом поляризаторе, но в остальном вся сборка прозрачна.

Когда на электроды подается напряжение, начинает действовать крутящий момент, который выравнивает молекулы скрученного нематического кристалла вдоль электрического поля и выпрямляет спиралевидную структуру. Этому препятствуют упругие силы, так как молекулы на поверхностях не свободны. Вращение поляризации уменьшается, и пиксель выглядит серым. Но благодаря свойству жидких кристаллов выравниваться при достаточно высокой разности потенциалов, проходящий сквозь них свет не вращается. В результате направление поляризации становится перпендикулярным второму фильтру, он полностью блокируется, и пиксель выглядит черным. Изменение напряжения между электродами по обе стороны ЖК-слоя каждого элемента изображения регулирует количество проходящего света и, соответственно, его яркость.

Скрученные нематические жидкие кристаллы помещаются между скрещенными поляризационными фильтрами для того, чтобы свет был максимально ярким без расхода электроэнергии, а получаемое при подаче напряжения затемнение - являлось равномерным. Возможен случай использования параллельных поляризационных фильтров. При этом темные и яркие состояния изменяются на противоположные. Однако в такой конфигурации черный не будет равномерным.

Вещество жидкого кристалла и выравнивающий слой содержат ионные соединения. Если длительное время действует электрическое поле определенной полярности, ионный материал притягивается поверхностями, ухудшая характеристики ЖК-монитора. Избежать этого можно, применяя либо переменный ток, либо изменяя полярность электрического поля во время обращения к устройству (реакция ЖК-слоя не зависит от полярности).

Мультиплексорный экран

Когда дисплей составлен из большого числа пикселей, управлять каждым из них напрямую невозможно, поскольку всем им понадобятся независимые электроды. Вместо этого монитор мультиплексируется. При этом электроды группируются и соединяются (как правило, по столбцам), и каждая группа питается отдельно. С другой стороны ячейки электроды также сгруппированы (как правило, по рядам) и подключены отдельно. Группы создаются таким образом, чтобы каждый пиксель обладал уникальной комбинацией источника и приемника. Электроника или программное обеспечение, управляющее ею, последовательно включает группы и управляет ими.

Важными факторами, которые следует учитывать при оценке ЖКД, являются разрешение, видимый размер, время отклика (скорость синхронизации), тип матрицы (пассивный или активный), угол обзора, поддержка цвета, коэффициент яркости и контрастности монитора, соотношение сторон и входные порты (например, DVI или VGA).

Цветные экраны

В цветных ЖК-дисплеях каждый отдельный пиксель делится на три ячейки или субпикселя, которые с помощью дополнительных фильтров (пигментных и металл-оксидных) окрашены в красный, синий и зеленый цвета. Каждым субпикселем можно управлять независимо, чтобы получить тысячи или миллионы возможных цветов. В старых ЭЛТ используется аналогичный метод.

В зависимости от использования монитора, цветовые компоненты могут размещаться в различных пиксельных геометриях. Если программное обеспечение знает, какой тип геометрии используется на данном дисплее, это может быть использовано для увеличения видимого разрешения посредством субпиксельной визуализации. Этот метод особенно полезен для сглаживания текста.

Пассивная матрица

Устройство ЖК-мониторов с небольшим количеством сегментов, например, используемых в карманных калькуляторах и цифровых часах, предусматривает для каждого элемента один электрический контакт. Внешняя выделенная схема обеспечивает электрический заряд, необходимый для управления каждым сегментом. При большом количестве экранных элементов такая структура становится слишком громоздкой.

Малые монохромные дисплеи, используемые, например, в старых ноутбуках, имеют структуру пассивной матрицы, в которой используется технология суперскрученных нематических элементов (STN) или двухслойная STN (DSTN), которая корректирует проблему смещения цвета. Каждая строка или столбец имеют одну электрическую цепь. Адресация каждого пикселя производится поочередно по адресу строки и столбца. Такой тип дисплея называют пассивной матрицей, поскольку состояние каждой ячейки должно сохраняться без электрического заряда. С ростом числа элементов (а также строк и столбцов) отображение становится все более сложным. Дисплеи с пассивной матрицей характеризуются слишком медленным откликом и плохой контрастностью.

Активные матричные технологии

В цветных экранах высокого разрешения, которыми оборудуются современные телевизоры и мониторы, применяется активная матрица. В ней к цветным и поляризационным фильтрам добавлен слой тонкопленочных транзисторов (TFT). При этом каждый пиксель управляется своим собственным выделенным полупроводниковым элементом. Транзистор обеспечивает доступ в каждом столбце только к одному пикселю. При активации строки к ней подключаются все столбцы, и на них подается напряжение. Затем строка деактивируется, и активируется следующая. При обновлении дисплея последовательно активируются все строки. Активно-матричные экраны значительно четче и ярче пассивных того же размера, и обычно отличаются более быстрым откликом, который обеспечивает гораздо лучшее качество изображения.

Скрученный нематик (TN)

TN-экраны содержат ЖК-элементы, которые для регулирования количества пропускаемого света в разной степени скручиваются и раскручиваются. Если напряжение на электроды ЖК-ячейки TN-матрицы не подается, то луч поляризуется таким образом, что может пройти сквозь нее. Жидкие кристаллы скручиваются пропорционально приложенной разнице потенциалов до 90°, изменяют поляризацию и блокируют подсветку. При подаче напряжения определенного уровня можно добиться практически любого оттенка серого.

3LCD-технология

Представляет собой систему видеопроекции, в которой для создания изображения используются 3 микродисплейные панели. В 1995 г. благодаря компактности и высокому качеству технология начала применяться многими производителями фронтальных проекторов, а с 2002 г. - и в Активная матрица обеспечивает отличную цветопередачу, высокую яркость и четкое изображение, а использование высокотемпературного поликремния позволяет получить большую глубину черного.

IPS-технология

Аббревиатура IPS расшифровывается как «плоскостное переключение». Принцип работы ЖК-монитора данного типа основан на выравнивании жидкокристаллических ячеек в горизонтальной плоскости. Метод заключается в том, что электрическое поле проходит через оба конца кристалла, но требует двух транзисторов на каждый пиксель вместо одного, как в стандартном TFT-экране. Следствием этого является большая блокировка участка дисплея, что требует более яркой подсветки, которая расходует больше энергии. Это накладывает ограничения в использовании данного в ноутбуках.

Экраны нулевой мощности

Зенитальные элементы с двумя устойчивыми состояниями (ZBD), разработанные компанией QinetiQ, способны сохранять свою ориентацию без внешнего электрического поля. Принцип работы ЖК-монитора данного типа основан на том, что кристаллы могут находиться в одном из двух положений - «черном» или «белом». Питание требуется лишь для изменения состояния ЖК-элемента на противоположное. Созданные на основе данной технологии экраны производит компания ZBD Displays. Она предлагает как черно-белые, так и цветные ZBD-дисплеи.

Французская компания Nemoptic разработала еще одну технологию, не требующую питания для сохранения изображения. Похожие на бумагу ЖК-экраны производятся на Тайване с июля 2003 года. Данная технология ориентирована на такие маломощные мобильные устройства, как переносные компьютеры и электронные книги. ЖКД с нулевой мощностью потребления составляют конкуренцию электронной бумаге.

Компания Kent Displays тоже разработала экран с нулевым энергопотреблением, в котором используются стабилизированные полимерные жидкие кристаллы ChLCD. Основным недостатком этой технологии является невысокая частота обновления, которая еще больше замедляется при низких температурах.

Контроль качества

ЖК-экраны могут иметь дефектные транзисторы, результатом чего являются постоянно открытые или закрытые участки, на которых пиксели остаются либо ярко освещенными, либо черными. Если в случае интегральных схем это бы означало брак, то дисплеи с несколькими неработающими точками, как правило, используются. Это невозможно запретить по экономическим соображениям, поскольку ЖК-панели значительно больше микросхем. Для определения максимально допустимого числа дефектных пикселей производители используют разные стандарты. Например, в ноутбуках ThinkPad для панели разрешением 2048 х 1536 оно равно 16. Из них яркими могут быть 15 пикселей, а темными - 16.

Дефект ЖК-экрана более вероятен, чем для большинства микросхем. Например, 12” SVGA-дисплей может иметь 8 дефектов, а 6” пластина - только 3. Вместе с тем из 137 штампов приемлемыми будут 134 при практически нулевом браке ЖКД. Стандарты качества сегодня намного выше, чем раньше, благодаря жесткой конкуренции между производителями и улучшенному контролю. SVGA-экран с 4 дефектными пикселями теперь считается дефектным, и клиенты имеют возможность обменять его на новый.

100% гарантия

Ряд производителей, особенно южнокорейских, поскольку там находятся одни из крупнейших фабрик по производству ЖК-панелей (например, LG), сегодня гарантируют отсутствие неисправных пикселей и производят замену экрана даже с единственным дефектом. Даже если такая гарантия не предоставляется, важно расположение дефектных участков. Экраны с несколькими неисправными ячейками могут быть непригодны, если они расположены рядом друг c другом. Кроме того, производители могут произвести замену панели в том случае, если дефект расположен в центре дисплея.

Диагностика и ремонт мониторов

Ниже приведены наиболее часто встречающиеся неисправности и методы их устранения.

Индикатор питания горит постоянно, но изображение отсутствует. Вероятна поломка подсветки или ее инвертора. Простейший способ диагностики ЖК-монитора - включить воспроизведение видео и направить яркий луч либо почти параллельно экрану, либо перпендикулярно. Это позволит увидеть изображение даже без подсветки. Ремонт монитора заключается в замене лампы подсветки или, скорее всего, ее инвертора.

Индикатор питания мигает. В этом случае необходимо проверить, поступает ли в дисплей сигнал - вероятно повреждение кабеля либо разъема. Если все в порядке, то основную причину неисправности для конкретной марки монитора следует поискать в интернете. Например, для Dell 1702FP - это выход из строя некоторых конденсаторов. Простейший выход в этом случае - заменить все емкости. Также можно шунтировать неисправный конденсатор заведомо исправным.

Индикатор питания не загорается. Вероятная причина - поломка блока питания монитора. Можно попробовать его заменить, купив новый или воспользовавшись запчастями от старого дисплея. Другая возможная причина - КЗ конденсатора (его легко найти визуально) и перегорание предохранителя. В этом случае их следует заменить.

Вертикальные или горизонтальные линии. Если монитор работает, но имеет линии, простирающиеся на всю ширину или высоту экрана или раздваивание изображения по вертикали или горизонтали, то вероятным виновником является транзистор или соединение дисплея. Если один из сотен разъемов неисправен или закорочен, то это сказывается на всем ряду пикселей. Для ноутбуков иногда достаточно сжать проблемный участок и проблема уйдет на годы. Для дисплея ПК потребуется снять заднюю панель, чтобы добраться до неисправного соединения и приложить к нему давление.

Особенности ухода

Иногда качество изображения можно восстановить с помощью простой салфетки для ЖК-мониторов. Она устранит пыль, пятна от еды, отпечатки пальцев, следы насекомых, грязь и разводы.

Лучше использовать профессиональные средства, такие как чистящие спреи и пены-аэрозоли, но их можно заменить разведенным в равных пропорциях изопропиловым спиртом или уксусом.

Не следует использовать средства на основе спирта, аммиака или ацетона, поскольку они способны нанести вред экрану, особенно антибликовому покрытию.

Чистящее средство следует наносить на салфетку, а не на загрязнение.

Протирая дисплей, нельзя применять силу.

Нельзя включать монитор до полного его высыхания.

Недостатки

ЖК-технология по-прежнему отличается некоторыми недостатками в сравнении с другими подходами:

  • Если электро-лучевые трубки могут работать с разным разрешением, не привнося искажений, ЖКД обеспечивают четкость только в случае их «родного разрешения». При попытке установить неподдерживаемые параметры экрана, изображение масштабируется, становится размытым или «блочным».
  • ЖК-панели обеспечивают более низкую контрастность, чем плазменные или светодиодные. Причиной этого является то, что свет часто проникает через поляризационный фильтр и вместо черного цвета отображается серый. Однако при ярком внешнем освещении контрастность ЖКД может превышать данный показатель некоторых других дисплеев по причине большей максимальной яркости.
  • ЖК-экраны отличаются большим временем отклика, чем плазменные аналоги, создавая видимые ореолы при быстром движении изображения, хотя этот показатель по мере развития технологии постоянно улучшается и в современных ЖК-панелях практически незаметен. Большинство TN- и IPS-дисплеев имеют время отклика 5-8 мс.
  • Овердрайв, применяемый в некоторых панелях, приводит к тому, что на участках изменяющегося изображения возникают артефакты в виде повышенного шума или ореолов. Причиной этого побочного эффекта является стремление пикселей достичь предполагаемой яркости (или напряжения, которое требуется для прохождения нужного количества света), после чего они возвращаются к целевому уровню, обеспечивая лучшее время отклика.
  • ЖК-дисплеи отличаются ограниченными углами обзора, из-за чего одновременно смотреть на экран может меньшее число зрителей. При достижении предельного угла контрастность и цветопередача ухудшаются. Но некоторые производители используют этот эффект, предлагая намеренно ограниченный обзор ЖК-монитора с целью обеспечения большей конфиденциальности, например, при пользовании ноутбуком в общественных местах. Кроме того, это позволяет создать для одного наблюдателя 2 различных изображения, создавая стереоскопический эффект.
  • Некоторые старые ЖК-мониторы могут вызвать мигрени и проблемами со зрением по причине мерцания ламп подсветки, работающих с частотой сети 50 Гц. В современных экранах это устранено с переходом на питание высокочастотным током.
  • ЖК-дисплеи иногда страдают от выгорания. По мере развития технологии данная проблема снижается, поскольку появляются новые методы ее устранения. Иногда экран можно восстановить путем длительного отображения белого изображения.
  • Некоторые ЖКД не способны работать в режиме низкого разрешения (например, 320 х 200). Но это связано со схемой управления, а не особенностями ЖК-монитора.
  • Плоские дисплеи очень уязвимы. Но их легкий вес снижает вероятность повреждения, а некоторые модели защищены стеклом.