В эвм используется система счисления. Представление информации в эвм

Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние которого на развитие научно-технического прогресса трудно переоценить.

Сегодня, кроме привычных компьютеров с клавиатурами, мониторами, дисководами, мир современной техники наполнен компьютерами-невидимками - микропроцессорами, который представляет собой компьютер в миниатюре.

Кроме обрабатывающего блока, он содержит блок управления и даже память (внутренние ячейки памяти). Это значит, что микропроцессор способен автономно выполнять все необходимые действия с информацией.

Массовое распространение микропроцессоры получили везде, где управление может быть сведено к отдаче ограниченной последовательности команд. Среди них выделяют: многопользовательские, оборудованные многими выносными терминалами и работающие в режиме разделения времени; встроенные, которые могут управлять станком, какой-либо подсистемой автомобиля, другого устройства, будучи его малой частью. Эти встроенные устройства (их называют контроллерами) выполняются в виде небольших плат.

Таким образом, созданные на основе микропроцессора вычислительные машины (микро-ЭВМ) незаменимы в современной технике.

Применение микропроцессоров даже лет 30 назад было около 2000 различных сфер: это управление производством (16%), научные исследования, транспорт и связь (17%), информационно-вычислительная техника (12%), военная техника (9%), бытовая техника (3%), обучение (2%), авиация и космос (15%), коммунальное и городское хозяйство, банковский учёт, метрология, медицина (4%) и другие области.

В настоящее время области их применения можно разделить на группы.

Научно-технические применения. Для них характерно требование высокого быстродействия. Это те области науки и техники, где крайне необходимо применение вычислительных машин: ядерная физика, метеорология, ракетная техника, медицина.

Обработка данных. Здесь выдвигается требование большого объема запоминающих устройств. В этой группе решаются задачи из областей статистики, материально-технического снабжения, бухгалтерского учета, планирования, резервирования билетов, разработки сетевых графиков и т.д.

Моделирование. Вычислительные машины используются для моделирования различных сложных явлений в экономике, автоматике, биологии, военном деле и т.д.

Управление производственными процессами. В этом случае машина работает в так называемом реальном масштабе времени, когда арифметические и логические операции выполняются во время протекания самих производственных процессов. Роль управляющей машины может сводиться к выполнению следующих функций:

Полному информированию оператора о ходе процесса;

Сигнализации, когда существенные для протекания процесса параметры выходят за допустимые пределы;

Автономному (без участия человека) управлению протеканием процесса.

Микропроцессоры получили массовое распространение в производстве, где управление может быть сведено к отдаче ограниченной последовательности команд. Например, развиваются следующие направления автоматизации с применением микропроцессорной техники систем управления:

Станки с ЧПУ плюс робот;

Станки с ЧПУ плюс робот плюс устройство активного контроля размеров;

Станки с ЧПУ плюс робот плюс система автоматической диагностики с самовозвратом.

Сегодня вся современная техника, как бытового, так и промышленного применения, представляет собой сложные технические системы, реализованные на базе микроэлектроники и средств вычислительной техники.

Вычислительные средства являются важнейшей составной частью различных устройств техники: радиоэлектронной аппаратуры, стиральных машин, холодильников, машин химической чистки одежды и прочих технических устройств разнообразного назначения, в том числе и военного. Так, немыслимо без использования микропроцессоров управление современным двигателем - обеспечение экономии расхода топлива, ограничение максимальной скорости движения, контроль исправности и т.д.

Наибольший эффект применения микропроцессоров достигается при встраиваемом варианте его использования, когда они встраивается внутрь приборов, устройств или машин. В настоящее время используются бытовые холодильники, стиральные машины-автоматы, печи СВЧ, телевизионные приемники, видеомагнитофоны и проигрыватели со встроенными микропроцессорами.

Таким образом, использование микропроцессоров в оборудовании позволяет повысить производительность тяжелого ручного труда, повысить качество товаров и услуг. Встраивание микропроцессоры в станки, оборудование и приборы поможет решить сложные проблемы программного регулирования технологическими процессами.

ЭВМ находят применение при выполнении широкого круга производственных задач. Так, например, диспетчер на крупном заводе имеет в своём распоряжении автоматизированную систему контроля, обеспечивающую бесперебойную работу различных агрегатов.

Компьютеры используются также для контроля за температурой и давлением при осуществлении различных производственных процессов.

Также управляются компьютером роботы на заводах, например на линиях сборки автомобилей, включающие многократно повторяющиеся операции, например затягивание болтов или окраску деталей кузова.

Рассматривая использование ЭВМ в технологическом управлении, можно выделить целую группу применений, связанных с измерениями и отображениями измеренного состояния. ЭВМ оказались информационным ядром принципиально новых средств производства; гибких производственных систем (ГПС) и измерительных комплексов.

Создание на основе ЭВМ контрольно-измерительной аппаратуры, с помощью которой можно проверять изделия прямо на производственной линии, является одной из новых областей применения ЭВМ на предприятиях. Использование ЭВМ в качестве контрольно-измерительных приборов экономически более эффективно, чем выпуск в ограниченных количествах специализированных сложных приборов с вычислительными блоками. Большой эффект в машиностроении дают ГПС, состоящие из станков с числовым программным управлением, автоматизированных складских и транспортных систем, управляемых при помощи ЭВМ.

В системах управления сложными технологическими процессами за работой технологического комплекса следят многочисленные датчики-приборы, измеряющие параметры технологического процесса (например, температуру и толщину прокатываемого металлического листа), контролирующие состояние оборудования (например, температуру подшипников турбины) или определяющие состав исходных материалов и готового продукта. Таких приборов в одной системе может быть от нескольких десятков до нескольких тысяч.

Датчики постоянно выдают сигналы, меняющиеся в соответствии с измеряемым параметром (аналоговые сигналы), в устройство связи с объектом ЭВМ, где сигналы преобразуются в цифровую форму и затем по определенной программе обрабатываются вычислительной машиной. ЭВМ сравнивает полученную от датчиков информацию с заданными результатами работы агрегата и вырабатывает управляющие сигналы, которые поступают на регулирующие органы агрегата. Например, если датчики подали сигнал, что лист прокатного стана выходит толще, чем предписано, то ЭВМ вычислит, на какое расстояние нужно сдвинуть валки прокатного стана и подаст соответствующий сигнал на исполнительный механизм, который переместит валки на требуемое расстояние.

Одним из важнейших свойств системы управления сложными технологическими процессами является обеспечение безаварийной работы сложного технологического комплекса. Для этого предусматривается возможность диагностирования технологического оборудования. На основе показаний датчиков система определяет текущее состояние агрегатов и тенденции к аварийным ситуациям и может дать команду на ведение облегченного режима работы или остановку вообще. При этом оператору представляют данные о характере и местоположении аварийных участков.

Таким образом, применение ЭВМ обеспечивает лучшее использование ресурсов производства, повышение производительности труда, экономию сырья, материалов и энергоресурсов, исключение тяжелых аварийных ситуаций, увеличение межремонтных периодов работы оборудования.

ЭВМ используется в техническом оснащении магазинов самообслуживания: покупки пропускают через оптическое сканирующее устройство, которое считывает универсальный код, нанесённый на покупку, по которому компьютер определяет, цену этого изделия, хранящуюся в памяти компьютера, и высвечивает ее на маленьком экране, чтобы покупатель мог видеть стоимость своей покупки. Как только все отобранные товары прошли через оптическое сканирующее устройство, компьютер немедленно выдаёт общую стоимость купленных товаров.

Мощные вычислительные системы применяются в банковских операциях, что позволяет выполнять большое количество операций, включая обработку чеков, регистрацию изменения каждого вклада, приём и выдачу вкладов, оформление ссуды и перевод вкладов с одного счёта на другой или из банка в банк.

Кроме того, крупнейшие банки имеют автоматические устройства, расположенные за пределами банка.

Банковские автоматы позволяют клиентам не выстаивать длинных очередей в банке, взять деньги со счета, когда банк закрыт.

Чрезвычайно возрос уровень применения ЭВМ в медицине, которая становится все более и более автоматизированной. Сложные современные исследования в медицине не мыслимы без применения вычислительной техники.

К таким исследованиям можно отнести компьютерную томографию, томографию с использованием явления ядерно-магнитного резонанса, ультрасонографию, исследования с применением изотопов.

В медицине широко применяются и экспертные системы, основное назначение которых - медицинская диагностика. Диагностические системы используются для установления связи между нарушениями деятельности организма и их возможными причинами.

Кроме того, ЭВМ применяется для формирования различного рода двигательных навыков в составе тренажеров при обучении различным профессиям: летчиков, машинистов, водителей и других.

Итак, развитие вычислительной техники и сферы ее использования - процессы взаимосвязанные и взаимообусловленные.

С одной стороны, потребности народного хозяйства стимулируют поиски учеными новых путей построения ЭВМ, а с другой стороны, появление ЭВМ с большими функциональными возможностями, с существенно улучшенными показателями по производительности, надежности и т.п., создает предпосылки для непрерывного расширения областей и развития форм применения ЭВМ.

электронный вычислительный микропроцессор моделирование

Принцип работы ЭВМ

В ЭВМ используется принцип программного управления . Один из способов его реализации был предложен в 1945 г. американским математиком Д. Нейманом, и с тех пор неймановский принцип программного управления используется в качестве основного принципа построения персональных ЭВМ. Этот принцип состоит в следующем:

информация кодируется в двоичной форме и разделяется на единицы информации - слова;

разнотипные слова информации различаются по способу использова­ния но не по способам кодирования;

слова информации размещаются в памяти ЭВМ и идентифицируют­ся номерами ячеек, которые называются номерами слов;

алгоритм представляется в виде последовательности управляющих слов - команд, которые определяют наименование операции и слова инфор­мации, участвующие в операциях. Алгоритм, представленный в терминах машинных команд, называется программой ;

выполнение вычислений, предписанных алгоритмом, сводится к последовательному выполнению команд в порядке, однозначно определяемом про­граммой. Первой выполняется, команда, заданная пусковым адресом програм­мы. Обычно это адрес первой команды программы. Адрес следующей команды однозначно определяется в процессе выполнения текущей команды и может быть либо адресом следующей по порядку команды, либо адресом любой дру­гой команды. Процесс вычислений продолжается до тех пор, пока не будет выполнена команда, предписывающая прекращение вычислений.

Характеристики ЭВМ определяют её назначение, область применения и потребительские качества. К ним относятся следующие показатели:

1. Состав и типы подключаемых внешних устройств;

2. Тип процессора. Наибольшее распространение в персональных ЭВМ в настоящее время имеют процессоры Pentium III, Pentium 4, Celeron фирмы Intel, K5, K6, K7 (Athlon), Duron фирмы AMD.

3. Разрядность. Разрядность ЭВМ определяется разрядностью процессора и характеризует точность вычислений и производительность машины. Различают 8-, 16-, 32- разрядные ЭВМ.

4. Быстродействие - число элементарных операций, выполняемых в единицу времени (оп/с). Быстродействие определяется тактовой частотой задающего генератора. Первые ПК имели тактовую частоту 4, 8, 16 МГц. В настоящее время частота тактового генератора достигает 2 ГГц и, и будет повышаться далее в связи с освоением новых технологий. Например, в ноябре 2000 г. был выпущен процессор Pentium 4 с тактовой частотой 1,5 ГГц, изготовленный по 0,18 микронной технологии (под технологией процессора понимается наименьший размер одного элемента, например транзистора, диода, конденсатора). А в настоящее время уже выпускаются процессоры данного типа с тактовой частотой 2 ГГц.

5. Ёмкость памяти (Кбайт) определяет возможности ЭВМ по использованию современных пакетов прикладных программ. Установленная оперативная память достигает 256 Мбайт, КЭШ – память первого и второго уровней составляет 128 - 256 Кбайт.

6. Ёмкость внешних запоминающих устройств (ВЗУ) определяет объём хранимой и используемой информации. Емкость накопителей на жестком диске достигает 100 Гбайт.

7. Программное обеспечение: операционная система, системы программирования, пакеты прикладных программ.

8. Массогабаритные характеристики.

Позиционные системы счисления позволяют записывать числа. Элементами ПСС являются символы. Например, в десятичной системе счисления используются символы 0, 1, … , 9. Пусть B основание ПСС, т.е. число, равное количеству символов. Для десятичной СС. В ПСС правильная десятичная дробь представляется в виде

где и - число знаков до и после запятой соответственно.

Пример .

Кроме десятичной применяются двоичная, восьмеричная и шестнадцатеричная СС. В двоичной СС используются символы и, в восьмеричной - , в шестнадцатеричной - .

Пример .

Представление числовой информации в ЭВМ

Для представления чисел в ЭВМ используется двоичная система счисления. Само число может представляться в различных форматах: как натуральное, как целое, с фиксированной запятой, с плавающей запятой, в двоично-десятичном формате и т.д.

Единицы измерения данных

В основу единиц измерения объема данных положена двоичная система счисления.

Единицы измерения данных. Числа в ЭВМ передаются по проводам (шинам) или хранятся в ячейках памяти. На проводе может быть либо нулевой либо высокий потенциал, а ячейка памяти может находиться в одном из двух устойчивых состояниях. Аналогом этих состояний является двоичный разряд. Одному двоичному разряду присвоили новую единицу данных, которую назвали битом .

Остальные внесистемные единицы представлены в табл.

Таблица - Внесистемные единицы измерения объема данных

Представление символьной информации в ЭВМ. Для представления символьной информации в памяти компьютера используется ASCII (American Standard Cods for Information Interchange). Этот код состоит из 7 бит. С его помощью можно закодировать символов. Кодировка символов осуществляется числами натурального ряда от 0 до 127. Каждому символу соответствует свое число. Первые значения кодов от 0 до 31 используют для служебных символов. Если эти коды используются в символьном тексте программы, то они на экране не отображаются и считаются пробелами. Потом следуют знаки препинания, специальные символы и знаки операций, числа и т.д. Заглавные буквы латинского алфавита начинаются с 65 и заканчиваются 90, а строчные - с 97 по 122. Если под код символа отводится 8 бит, то еще 128 чисел могут быть использованы для кодирования, например, русского алфавита.

В ОС Windows 2000 используется универсальная система кодирования UNICODE символов. Для кодирования символов используется 16 двоичных разрядов. В эту систему кодирования можно поместить различных символов, что достаточно для размещения символов основных языков планеты.

Представление логической информации в ЭВМ. В Паскале код символа возвращается функцией ord. Под логический тип отводят 1 бит: ord (false) =0, ord(true) =1.

Поля переменной длины имеют размер от 0 до 256 байт.

Кодирование графических данных. Изображение на экране монитора формируется системой светящихся точек. Она называется растром . Каждая точка характеризуется координатами, цветом и яркостью. Для черно-белых изображений общепринята градация 256 оттенков серого цвета, для кодировки которой используется 1 байт.

Считается, что любой цвет можно получить смешением красного (Red), зеленого (Green) и голубого (Blue). Такой способ получения цвета называется RGB. Если для каждого цвета используется 8 бит для градации его интенсивности, то для задания цвета одной точки потребуется 24 бит, позволяющих получить 2 24 = 16777216 различных цветов. Это соответствует способности человеческого глаза различать цвета, поэтому такой способ представления графической информации называется полноцветным (True Color ).

Если при кодировке цвета используется 16 разрядов, то способ называется High Color .

Если при кодировании цвета используют 8 бит, то метод кодирования называется индексным. Каждому номеру (индексу) ставится в соответствие свой образец цвета, который размещается в справочной таблице - палитре .

Кодировка звуковой информации. При воспроизведении звуков используется метод таблично-волнового синтеза. В специальных таблицах собраны в числовом виде основные параметры звучания всех основных инструментов.

Понятие программного обеспечения (ПО). Программные продукты условно разделяются на три класса:

  • - системное программное обеспечение;
  • - прикладные программы;
  • - инструментарий технологии программирования.

Системное программное обеспечение обеспечивает эффективную и надежную работу компьютера, создает эффективную операционную среду выполнения других программ, проводит диагностику аппаратуры, копирует, восстанавливает и архивирует файлы, обеспечивает интерфейс оператора.

К наиболее распространенным операционным системам относятся MS DOS, Windows 95, OS / 2, NetWare, Windows NT, Unix. В состав системного входят базовое и сервисное программное обеспечение. Базовое программное обеспечение включает в себя операционные систему , оболочку и сетевую систему . Сервисное программное обеспечение расширяет возможности базового и обеспечивает диагностику работы компьютера, вирусную защиту, архивацию файлов, обслуживание дисков и сети.

Операционные оболочки это программы, облегчающие общение пользователя с компьютером. Оболочки могут быть текстовые и графические. К популярным текстовым оболочкам операционной системы MS DOS относятся Norton Commander 5.0 (фирма Symantec), XTree Gold 4.0, Norton Navigator и др. Наиболее популярны графические оболочки Windows.

Программы, входящие в состав сервисного программного обеспечения называются утилитами, например Norton Utilities (корпорация Symantec).

К пакетам прикладных программ относят проблемно-ориентированные, автоматизированного проектирования, общего назначения, интегрированные пакеты (Microsoft Office), офисные, настольные издательские системы, программные средства мультимедиа. Проблемно-ориентированные включают в себя ППП автоматизированного бухгалтерского учета, финансовой деятельности, кадрового учета, управления материальными запасами и производством, банковские информационные системы и т.д. К прикладным программам общего назначения относят СУБД, текстовые и табличные процессоры, средства презентационной графики. К офисным ППП относят органайзеры, программы-переводчики, электронная почта.

Целые числа являются простейшими числовыми данными, с которыми оперирует ЭВМ. Для целых чисел существуют два представления: беззнаковое (только для неотрицательных целых чисел) и со знаком. Очевидно, что отрицательные числа можно представлять только в знаковом виде. Целые числа в компьютере хранятся в формате с фиксированной запятой .

Представление целых чисел в беззнаковых целых типах.

Для беззнакового представления все разряды ячейки отводятся под представление самого числа. Например, в байте (8 бит) можно представить беззнаковые числа от 0 до 255. Поэтому, если известно, что числовая величина является неотрицательной, то выгоднее рассматривать её как беззнаковую.

Представление целых чисел в знаковых целых типах.

Для представления со знаком самый старший (левый) бит отводится под знак числа, остальные разряды - под само число. Если число положительное, то в знаковый разряд помещается 0, если отрицательное - 1. Например, в байте можно представить знаковые числа от - 128 до 127.

Прямой код числа.

Представление числа в привычной форме "знак"-"величина", при которой старший разряд ячейки отводится под знак, а остальные - под запись числа в двоичной системе, называется прямым кодом двоичного числа. Например, прямой код двоичных чисел 1001 и - 1001 для 8-разрядной ячейки равен 00001001 и 10001001 соответственно.

Положительные числа в ЭВМ всегда представляются с помощью прямого кода. Прямой код числа полностью совпадает с записью самого числа в ячейке машины. Прямой код отрицательного числа отличается от прямого кода соответствующего положительного числа лишь содержимым знакового разряда. Но отрицательные целые числа не представляются в ЭВМ с помощью прямого кода, для их представления используется так называемый дополнительный код .

Дополнительный код числа.

Дополнительный код положительного числа равен прямому коду этого числа. Дополнительный код отрицательного числа m равен 2 k -|m|, где k - количество разрядов в ячейке.

Как уже было сказано, при представлении неотрицательных чисел в беззнаковом формате все разряды ячейки отводятся под само число. Например, запись числа 243=11110011 в одном байте при беззнаковом представлении будет выглядеть следующим образом:

При представлении целых чисел со знаком старший (левый) разряд отводится под знак числа, и под собственно число остаётся на один разряд меньше. Поэтому, если приведённое выше состояние ячейки рассматривать как запись целого числа со знаком, то для компьютера в этой ячейке записано число - 13 (243+13=256=28).

Но если это же отрицательное число записать в ячейку из 16-ти разрядов, то содержимое ячейки будет следующим:

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

Знаковый разряд Возникает вопрос: с какой целью отрицательные числа записываются в виде дополнительного кода и как получить дополнительный код отрицательного числа? Дополнительный код используется для упрощения выполнения арифметических операций. Если бы вычислительная машина работала с прямыми кодами положительных и отрицательных чисел, то при выполнении арифметических операций следовало бы выполнять ряд дополнительных действий. Например, при сложении нужно было бы проверять знаки обоих операндов и определять знак результата. Если знаки одинаковые, то вычисляется сумма операндов и ей присваивается тот же знак. Если знаки разные, то из большего по абсолютной величине числа вычитается меньшее и результату присваивается знак большего числа. То есть при таком представлении чисел (в виде только прямого кода) операция сложения реализуется через достаточно сложный алгоритм. Если же отрицательные числа представлять в виде дополнительного кода, то операция сложения, в том числе и разного знака, сводится к из поразрядному сложению.

Для компьютерного представления целых чисел обычно используется один, два или четыре байта, то есть ячейка памяти будет состоять из восьми, шестнадцати или тридцати двух разрядов соответственно.

Алгоритм получения дополнительного кода отрицательного числа.

Для получения дополнительного k-разрядного кода отрицательного числа необходимо

  • 1. модуль отрицательного числа представить прямым кодом в k двоичных разрядах;
  • 2. значение всех бит инвертировать: все нули заменить на единицы, а единицы на нули (таким образом, получается k-разрядный обратный код исходного числа);
  • 3. к полученному обратному коду прибавить единицу.

Получим 8-разрядный дополнительный код числа - 52:

  • 00110100 - число |-52|=52 в прямом коде
  • 11001011 - число - 52 в обратном коде
  • 11001100 - число - 52 в дополнительном коде

Можно заметить, что представление целого числа не очень удобно изображать в двоичной системе, поэтому часто используют шестнадцатеричное представление:

Представление вещественных чисел в компьютере.

Для представления вещественных чисел в современных компьютерах принят способ представления с плавающей запятой . Этот способ представления опирается на нормализованную (экспоненциальную) запись действительных чисел.

Как и для целых чисел, при представлении действительных чисел в компьютере чаще всего используется двоичная система, следовательно, предварительно десятичное число должно быть переведено двоичную систему.

Нормализованная запись числа.

Нормализованная запись отличного от нуля действительного числа - это запись вида

где q - целое число (положительное, отрицательное или ноль), а m - правильная P-ичная дробь, у которой первая цифра после запятой не равна нулю, то есть. При этом m называется мантиссой числа, q - порядком числа.

  • 1. 3,1415926 = 0, 31415926 * 10 1 ;
  • 2. 1000=0,1 * 10 4 ;
  • 3. 0,123456789 = 0,123456789 * 10 0 ;
  • 4. 0,0000107 8 = 0,1078 * 8 -4 ; (порядок записан в 10-й системе)
  • 5. 1000,0001 2 = 0, 100000012 * 2 4 .

Так как число ноль не может быть записано в нормализованной форме в том виде, в каком она была определена, то считаем, что нормализованная запись нуля в 10-й системе будет такой:

0 = 0,0 * 10 0 .

Нормализованная экспоненциальная запись числа - это запись вида a= m*P q , где q - целое число (положительное, отрицательное или ноль), а m - P-ичная дробь, у которой целая часть состоит из одной цифры. При этом (m-целая часть) называется мантиссой числа, q - порядком числа.

Электронная вычислительная техника - это электронные устройства, предназначенные для сбора, передачи, хранения, обработки и выдачи информации. Нередко термин «электронная вычислительная техника» отождествляют с другим - «электронная вычислительная машина» (ЭВМ). По существу же, помимо ЭВМ, к устройствам электронной вычислительной техники можно отнести и электронные устройства, обеспечивающие передачу информации (различных данных) на расстояния. Эти устройства связи позволяют объединять несколько вычислительных машин в единый комплекс или вводить данные в ЭВМ с удаленных от нее пунктов, равно как и передавать на них результаты вычислений.

ЭВМ делятся на цифровые и аналоговые. В свою очередь цифровые ЭВМ делятся на универсальные и управляющие.

Универсальные ЭВМ предназначены для решения задач (обработки информации), конкретный характер которых не конкретизируется при ее разработке. Универсальная ЭВМ состоит из набора устройств различного функционального назначения, соединенных между собой проводами. Конкретный набор устройств, комплектующий ЭВМ данного типа, целиком должен определяться характером задач, для решения которых эта машина предназначена. Принципиально все устройства ЭВМ можно отнести к одной из следующих групп: 1) входные устройства, предназначенные для ввода информации и программы в ЭВМ; 2) запоминающие устройства, хранящие информацию; 3) арифметическое устройство, обрабатывающее информацию в соответствии с заданной программой; 4) выходные устройства, обеспечивающие выдачу результатов; 5) управляющие устройства, координирующие и управляющие работой как отдельных устройств, так и ЭВМ в целом.

Запоминающие устройства ЭВМ делятся на оперативное и внешние. Оперативное - быстродействующее, относительно малой емкости; в нем хранятся данные, используемые на данном шаге вычислений; вся остальная информация хранится во внешней памяти - относительно медленно действующей и большой емкости. В современных ЭВМ принято (конструктивно так и оформляется) оперативную память и арифметическое устройство объединять в единый блок-центральный вычислитель (процессор), к которому с помощью специальных устройств каналов, входящих в центральный вычислитель, подсоединяются остальные устройства, которые принято называть периферийными. Современная ЭВМ представляет сложный комплекс, управление работой которого входом вычислительного процесса) автоматизировано с помощью специальных управляющих программ, входящих в математическое обеспечение ЭВМ.

Управляющие ЭВМ предназначаются для управления процессами в самых различных областях. Информация, вводимая в них, представляет собой данные о ходе того или иного процесса, получаемые с датчиков. Результаты обработки (вычислений) реализуются через устройства, обеспечивающие требуемое протекание управляемого процесса. Аналоговые вычислительные машины (АВМ) предназначаются для решения уравнений, электронного моделирования различных процессов.

В настоящее время ЭВМ широко используются в медицине для целей машинной диагностики, построения автоматизированных систем управления (АСУ).

Электронные вычислительные машины (ЭВМ) . Основными схемными элементами ЭВМ являются электронные приборы - электронные лампы или транзисторы (см. Электронные усилители). ЭВМ по сравнению с другими типами вычислительных машин (арифмометр, клавишная электромеханическая машина) являются более быстродействующими, универсальными и надежными в работе, а главное - более автоматизированными. Перед началом работы в ЭВМ вводятся программа вычислений и исходные данные для решения задачи, после чего вычисления производятся автоматически до получения конечного результата. Кроме обычных математических и логических операций по заданной программе, ЭВМ могут производить операции условного перехода, изменяющие программу вычислений в зависимости от промежуточных результатов или от других дополнительных условий. Эта особенность ЭВМ (самоуправляемость) при большом быстродействии (до 1 000 000 операций в секунду) позволяет выполнять весьма сложные вычисления, управлять технологическими процессами, производить логическую и математическую обработку результатов опыта или клинического анализа непрерывно в ходе исследования (см. Кибернетика).

По принципу действия ЭВМ разделяют на аналоговые и цифровые. В аналоговых ЭВМ цифры или процессы, подлежащие математической или логической обработке, заменяются соответствующими непрерывными значениями электрических токов или напряжений, с которыми и производят необходимые операции. Точность вычислений определяется погрешностями измерений и лежит в пределах 10-0,1%. Аналоговые ЭВМ преимущественно применяют для решения интегральных и дифференциальных уравнений, моделирования и управления процессами в реальном масштабе времени, особенно если не требуется большой точности.

В цифровых ЭВМ вычисления производятся с помощью элементов, находящихся в конечном числе дискретных состояний (обычно в двух, десяти). Поэтому перед вводом непрерывные процессы должны быть представлены в цифровой форме, что осуществляется с помощью специальных преобразователей «аналог-код». Точность вычислений определяется разрядностью - числом цифр (разрядов) в одной ячейке «памяти» (обычно 7-10 десятичных цифр). Практически на цифровых ЭВМ с помощью программы может быть достигнута любая необходимая точность.

Современная ЭВМ состоит из следующих основных узлов. 1. Арифметическое устройство, где производятся основные операции. 2. Запоминающее устройство (различают долговременное и оперативное). В долговременном запоминающем устройстве данные хранятся на магнитных дисках, барабанах, лентах или перфокартах. Время хранения информации и объем долговременного запоминающего устройства практически не ограничены, однако скорость обращения тем меньше, чем больше объем. Оперативное запоминающее устройство осуществляется обычно на ферромагнитных элементах, электроннолучевых трубках или на электронных лампах. Время поиска информации в оперативном запоминающем устройстве порядка миллионных долей секунды, однако объем его всегда ограничен. 3. Устройство ввода данных. 4. Устройство вывода данных. Ввод осуществляется с перфоленты, перфокарт, магнитных лент. Вывод в большинстве случаев выполняется буквопечатающим устройством (в современных ЭВМ ввод и вывод данных - наиболее медленные операции). 5. Управляющее устройство обеспечивает автоматическую работу всех устройств ЭВМ в соответствии с программой.

Типовые современные ЭВМ средней мощности требуют помещения в 40-60 м 2 , 5- 20 человек обслуживающего персонала, питание 10-20 кет.

Основные области применения ЭВМ в медицине и биологии следующие. 1. Диагностика заболеваний, определение прогноза и выбор оптимального варианта лечения, классификация биологических объектов. 2. Автоматическая обработка экспериментальных и клинических данных (выделение регулярных составляющих в электроэнцефалограммах и неврограммах, спектральный и корреляционный анализ биологических процессов, подсчет и классификация клеток крови или гистологических препаратов, анализ данных радиографии, обработка данных рентгенологического обследования). 3. Реализация математических и физических моделей (моделирование нервных сетей, поведения, обмена в организме или отдельных клетках, отдельных органах или системах организма, поведения популяций животных). 4. Стереотаксические расчеты во время операций на головном мозге человека. 5. Автоматизация обработки медицинских архивных материалов. 6. Предсказание фармакологических свойств веществ по их физико-химическим характеристикам. 7. Автоматическое управление искусственным дыханием и кровообращением во время операций и при наблюдении за больными в тяжелом состоянии. 8. Планирование и автоматизация длительных и дорогостоящих экспериментов. Имеется тенденция к дальнейшему расширению областей применения ЭВМ в биологии и медицине.