Типы моделей данных реляционная модель данных. Основные понятия реляционной модели данных

Реляционная модель данных

Реляционная модель базируется на теоретико-множественном понятии отношения. В математических дисциплинах существует понятие ʼʼотношение ʼʼ (relation), физическим представлением которого является таблица . Отсюда и произошло название модели – реляционная .

Применительно к БД понятия ʼʼреляционная БДʼʼ и ʼʼтабличная БДʼʼ являются синонимами. Реляционные базы получили наибольшее распространение в мире. Почти всœе продукты БД, созданные с конца 70-х годов, являются реляционными.

В 1970 году появились работы, в которых обсуждались возможности применения различных табличных моделœей данных. Наиболее значительной из них была статья сотрудника фирмы IBM д-ра Э. Кодда (Codd E.F., A Relational Model of Data for Large Shared Data Banks (Реляционная модель данных для больших совместно используемых банков данных). CACM 13: 6, June 1970), где впервые был применен термин "реляционная модель данных" . Проект System R был разработан в исследовательской лаборатории корпорации IBM. Этот проект был задуман с целью доказать практичность реляционной модели. Реляционные СУБД относятся к СУБД второго поколения.

Цели создания реляционной модели данных:

1. Обеспечение более высокой степени независимости от данных.

2. Создание прочного фундамента для решения проблем непротиворечивости и избыточности данных.

3. Расширение языков управления данными за счёт включения операций над множествами.

Коммерческие системы на базе реляционной модели данных начали появляться в конце 70-х – начале 80-х годов. Сегодня существует несколько сотен типов различных реляционных СУБД.

Реляционная модель является удобной и наиболее привычной формой представления данных в виде таблицы (отношения ). Каждое отношение имеет имя и состоит из поименованных атрибутов (столбцов) данных. Одним из базовых преимуществ реляционной модели является ее однородность . Все данные хранятся в таблицах, в которых каждая строка имеет один и тот же формат. Каждая строка в таблице представляет некоторый объект реального мира или соотношение между объектами.

Основными понятиями, с помощью которых определяется реляционная модель, являются следующие:

1. реляционная БД – набор нормализованных отношений;

2. отношение – файл, плоская таблица, состоящая из столбцов и строк; таблица, в которой каждое поле является атомарным;

3. домен – совокупность допустимых значений, из которой берется значение соответствующего атрибута определœенного отношения. С точки зрения программирования, домен - ϶ᴛᴏ тип данных;

4. универсум – совокупность значений всœех полей или совокупность доменов;

5. кортеж – запись, строка таблицы;

6. кардинальность - количество строк в таблице;

7. атрибуты поименованныеполя, столбцы таблицы;

8. степень отношения - количество полей (столбцов);

9. схема отношения – упорядоченный список имен атрибутов;

10. схема реляционной БД – совокупность схем отношений;

11. первичный ключ – уникальный идентификатор с неповторяющимися записями – столбец или неĸᴏᴛᴏᴩᴏᴇ подмножество столбцов, которые единственным образом определяют строки.

Первичный ключ, который включает более одного столбца, принято называть множественным , или комбинированным , или составным , или суперключом .

Правило целостности объектов утверждает, что первичный ключ не должна быть полностью или частично пустым.

Соотношение этих понятий иллюстрируется на рис. 4.5.

ФИО Год рожд. Должность Кафедра
1. Иванов И. И. Зав. каф. 22
2. Сидоров С. С. Проф. 22
3. Андреева Г. Г. Проф. 22
4. Цветкова С. С. Доцент
5. Козлов К. К. Доцент 22
6. Петров П. П. Ст. преп. 22
Атрибуты

рис. 4.5. Основные понятия реляционной модели данных.

Иногда в качестве первичного ключа в таблице бывают выбраны разные столбцы. Выделœенный ключ – ключ, явно перечисленный вместе с реляционной схемой. В противном случае говорят о неявном ключе, или возможном ключе, или ключе-кандидате.

12. внешний ключ - ϶ᴛᴏ столбец или подмножество столбцов одной таблицы, которые могут служить в качестве первичного ключа для другой таблицы. Внешний ключ таблицы является ссылкой на первичный ключ другой таблицы. Поскольку целью построения БД является хранение всœех данных, по возможности, в одном экземпляре, то если некий атрибут присутствует в нескольких отношениях, то его наличие обычно отражает определœенную связь между строками этих отношений.

Внешние ключи реализуют связи между таблицами БД.

Внешний ключ, как и первичный ключ, может представлять собой комбинацию столбцов. На практике внешний ключ всœегда будет составным, в случае если он ссылается на составной первичный ключ другой таблицы. Количество столбцов и их типы данных в первичном и внешнем ключах должны совпадать.

В случае если таблица связана с несколькими другими таблицами, она может иметь несколько внешних ключей.

Каждая реляционнаятаблица обладает следующими свойствами :

Имеет имя, ĸᴏᴛᴏᴩᴏᴇ отличается от имен всœех других таблиц;

Данные в ячейках таблицы должны быть структурно неделимыми. Недопустимо, чтобы в ячейке таблицы содержалось более одной порции информации. К примеру , номер и серия паспорта должны располагаться в разных столбцах таблицы;

Всœе столбцы в таблице однородные, ᴛ.ᴇ. всœе элементы в столбце имеют одинаковый тип (числовой, символьный и т.д.) и длину;

Каждый столбец имеет уникальное имя;

Одинаковые строки в таблице отсутствуют;

Порядок следования строк и столбцов должна быть произвольным, независимо от их переупорядочивания отношение будет оставаться одним и тем же, а потому иметь тот же смысл.

Основные понятия реляционной модели данных - понятие и виды. Классификация и особенности категории "Основные понятия реляционной модели данных" 2017, 2018.

Реляционная модель данных предложена сотрудником фирмы IBM Эдгаром Коддом и основывается на понятии отношение (relation).

Реляционная модель данных (РМД) некоторой предметной области представляет собой набор отношений, изменяющихся во времени. При создании информационной системы совокупность отношений позволяет хранить данные об объектах предметной области и моделировать связи между ними.

Отношение представляет собой множество элементов, называемых кортежами. Наглядной формой представления отношения является привычная для человеческого восприятия двумерная таблица.

С помощью одной таблицы удобно описывать простейший вид связей между данными, а именно деление одного объекта (явления, сущности, системы и т.п.), информация о котором хранится в таблице, на множество подобъектов, каждому из которых соответствует строка или запись таблицы. При этом каждый из подобъектов имеет одинаковую структуру или свой­ства, описываемые соответствующими значениями полей записей. Например, таблица может содержать сведения о группе обучаемых, о каждом из которых известны следующие характеристики: фамилия, имя и отчество, пол, возраст и образование. Поскольку в рамках одной таблицы не удается описать более сложные логические структуры данных из предметной области, применяют связывание таблиц.

Физическое размещение данных в реляционных базах на внешних носителях легко осуществляется с помощью обычных файлов.

Достоинство реляционной модели данных заключается в простоте, понятности и удобстве физической реализации на ЭВМ. Именно простота и понятность для пользователя явились основной причиной их широкого использова­ния. Проблемы же эффективности обработки данных этого типа оказались технически вполне разрешимыми.

Основной структурой данных в модели является отношение, именно поэтому модель получила название реляционной (от английского relation отношение).

Отношение - это множество, представляемое двумерной таблицей, состоящей из строк и столбцов данных. Строки таблицы, из которых состоит отношение, называют кортежами .

Домен отношения – множество всех возможных значений определенного атрибута отношения.

Математически отношение можно описать следующим образом. Пусть даны n множеств D1, D2, D3,…Dn, тогда отношение R есть множество упорядоченных кортежей , где dkDk, dk – атрибут, а Dk – домен отношения R.

Отношение имеет простую графическую интерпретацию, оно может быть представлено в виде таблицы (табл. 2.1), столбцы которой соответствуют вхождениям доменов в отношение, а строки – наборам из n значений, взятых из исходных доменов, которые расположены в строго определенном порядке в соответствии с заголовком.

Таблица 2.1

Пример отношения в виде таблицы (отношение R)

Данная таблица обладает рядом специфических свойств:

1. В таблице нет двух одинаковых строк.

2. Таблица имеет столбцы, соответствующие атрибутам отношения.

3. Каждый атрибут в отношении имеет уникальное имя.

4. Порядок строк в таблице произвольный.

Вхождение домена в отношение принято называть атрибутом. Строки отношения называются кортежами.

Количество атрибутов в отношении называется степенью, или рангом, отношения.

Следует заметить, что в отношении не может быть одинаковых кортежей, это следует из математической модели: отношение – это подмножество декартова произведения, а в декартовом произведении все n -ки различны. В соответствии со свойствами отношений два отношения, отличающиеся только порядком строк или порядком столбцов, будут интерпретироваться в рамках реляционной модели как одинаковые, то есть отношение R (см. табл. 2.1) и отношение R1, изображенное далее (табл. 2.2), одинаковы с точки зрения реляционной модели данных.

Таблица 2.2

Пример отношения в виде таблицы (отношение R1)

Дисциплина

Теория автоматов

Теория автоматов

Степанов

Теория автоматов

Базы данных

Базы данных

Степанов

Любое отношение является динамической моделью некоторого реального объекта внешнего мира. Поэтому вводится понятие экземпляра отношения, которое отражает состояние данного объекта в текущий момент времени, и понятие схемы отношения, которая определяет структуру отношения. Схемой отношения R называется перечень имен атрибутов данного отношения с указанием домена, к которому они относятся:

Если атрибуты принимают значения из одного и того же домена, то они называются T-сравнимыми, где T – множество допустимых операций сравнения, заданных для данного домена. Например, если домен содержит числовые данные, то для него допустимы все операции сравнения, тогда

Как уже говорилось ранее, реляционная модель представляет базу данных в виде множества взаимосвязанных отношений. В отличие от теоретико-графовых моделей в реляционной модели связи между отношениями поддерживаются неявным образом. В реляционной модели, так же как и в остальных, поддерживаются иерархические связи между отношениями. В каждой связи одно отношение может выступать как основное, а другое отношение выступает в роли подчиненного. Это означает, что один кортеж основного отношения может быть связан с несколькими кортежами подчиненного отношения. Для поддержки этих связей оба отношения должны содержать наборы атрибутов, по которым они связаны. В основном отношении это первичный ключ отношения (PRIMARY KEY), который однозначно определяет кортеж основного отношения. В подчиненном отношении для моделирования связи должен присутствовать набор атрибутов, соответствующий первичному ключу основного отношения. Однако здесь этот набор атрибутов уже является вторичным ключом, то есть он определяет множество кортежей подчиненного отношения, которые связаны с единственным кортежем основного отношения. Данный набор атрибутов в подчиненном отношении принято называть внешним ключом (FOREIGN KEY).

Например, рассмотрим ситуацию, когда надо описать карьеру некоторого индивидуума. Каждый человек в своей трудовой деятельности сменяет несколько мест работы в разных организациях, где он работает в разных должностях. Тогда мы должны создать два отношения: одно для моделирования всех работающих людей, а другое для моделирования записей в их трудовых книжках, если для нас важно не только отследить переход работника из одной организации в другую, но и прохождение его по служебной лестнице в рамках одной организации (рис. 2.6).

Рис. 2.6. Связь между основным и подчиненным отношениями

PRIMARY KEY отношения Сотрудник - атрибут - Паспорт является FOREIGN KEY для отношения «карьера».

МОДЕЛИ ДАННЫХ

Хранимые в базе данные имеют определенную логическую структуру, описываются некоторой моделью представления данных (моделью данных), поддерживаемой СУБД. К числу классических относятся следующие модели данных:

· иерархическая;

· сетевая;

· реляционная.

Кроме того, в последние годы появились и стали более активно внедряться на практике следующие модели данных:

· постреляционная,

· многомерная,

· объектно-ориентированная.

Разрабатываются также всевозможные системы, основанные на других моделях данных, расширяющих известные модели. В их числе можно назвать объектно-реляционные, дедуктивно-объектно-ориентированные, семантические, концептуальные и ориентированные модели. Некоторые из этих моделей служат для интеграции баз данных, баз знаний и языков программирования. В некоторых СУБД поддерживается одновременно несколько моделей данных.

2.1. Иерархическая модель данных

В иерархической модели данные можно описать с помощью упорядоченного графа (или дерева). Упрощенно представление связей между данными в иерархической модели показано на рис. 2.1.


Рис. 2.1. Представление связей в иерархической модели

Для описания структуры (схемы) иерархической БД на некотором языке программирования используется тип данных «дерево».

Тип «дерево» схож с типом данных «запись» языка Паскаль. Допускается вложенность типов, каждый из которых находится на некотором уровне.

Тип «дерево» является составным. Он включает в себя подтипы («поддеревья»), каждый из которых, в свою очередь, является типом «дерево». Каждый из типов «дерево» состоит из одного «корневого» типа и упорядоченного набора (возможно пустого) подчиненных типов. Каждый из элементарных типов, включенных в тип «дерево», является простым или составным типом «запись». Простая «запись» состоит из одного типа, например, числового. Составная «запись» объединяет некоторую совокупность типов, например, целое, строку символов и указатель (ссылку). Пример типа «дерево» как совокупности типов показан на рис. 2.2.

Корневым называется тип, который имеет подчиненные типы и сам не является подтипом. Подчиненный тип (подтип) является потомком по отношению к типу, который выступает для него в роли предка (родителя). Потомки одного и того же типа являются близнецами по отношению друг к другу.

В целом тип «дерево» представляет собой иерархически организованный набор типов «запись».



Рис. 2.2. Пример типа «дерево»

Иерархическая база данных представляет собой упорядоченную совокупность экземпляров данных типа «дерево» (деревьев), содержащих экземпляры типа «запись» (записи). Часто отношения родства между типами переносят на отношения между самими записями. Поля записей хранят собственно числовые или символьные значения, составляющие основное содержание БД. Обход всех элементов иерархической БД обычно производится сверху вниз и слева направо.

В иерархической СУБД может использоваться терминология, отличающаяся от приведенной. Например, запись могут называть сегментом, а под записью БД понимать всю совокупность записей, относящихся к одному экземпляру типа "«дерево".

Данные в базе с приведенной схемой (рис.2.2.) могут выглядеть, например, как показано на рис.2.3.



Рис. 2.3. Данные в иерархической базе

Для организации физического размещения иерархических данных в памяти компьютера могут использоваться следующие группы методов:

· представление линейным списком с последовательным распределением памяти (адресная арифметика, левосписковые структуры);

· представление связными линейными списками (методы, использующие указатели и справочники).

К основным операциям манипулирования иерархически организованными данными относятся следующие:

· поиск указанного экземпляра БД (например дерева со значением 912 в поле Шифр_группы);

· переход от одного дерева к другому;

· переход от одной записи к другой внутри дерева (например, к следующей записи типа Студенты);

· вставка новой записи в указанную позицию;

· удаление текущей записи и т.д.

В соответствии с определением типа «дерево», можно заключить, что между предками и потомками автоматически поддерживается контроль целостности связей. Основное правило контроля целостности формулируется следующим образом: потомок не может существовать без родителя, а у некоторых родителей может не быть потомков. Механизмы поддержания целостности связей между записями различных деревьев отсутствуют.

К достоинствам иерархической модели данных относятся эффективное использование памяти компьютера и неплохие показатели времени выполнения основных операций над данными. Иерархическая модель данных удобна для работы с иерархически упорядоченной информацией.

Недостатком иерархической модели является ее громоздкость для обработки информации с достаточно сложными логическими связями, а также сложность понимания для обычного пользователя.

На иерархической модели данных основано сравнительно ограниченное количество СУБД, в числе которых можно назвать зарубежные системы IMS, PS/Focus, Team-Up, Data Edge, а также отечественные системы Ока, ИНЭС, МИРИС.

2.2. Сетевая модель

Сетевая модель данных позволяет отображать разнообразные взаимосвязи элементов данных в виде произвольного графа, обобщая тем самым иерархическую модель данных (рис. 2.4). Наиболее полно концепция сетевых БД впервые была изложена в Предложениях группы КОДАСИЛ (KODASYL).

Для описания схемы сетевой БД используется де группы типов: «запись» и «связь». Тип «связь» определяется для двух типов «запись»: предка и потомка. Переменные типа «связь» являются экземплярами связей.


Состоит из студентов

Возглавляется старостой

Рис. 2.5. Пример схемы сетевой БД

В различных СУБД сетевого типа для обозначения одинаковых по сути понятий могут использоваться различные термины. Например, такие, как элементы и агрегаты данных, записи, наборы, области и т.д.

Физическое размещение данных в базах сетевого типа может быть организовано практически теми же методами, что и в иерархических базах данных.

К числу важнейших операций манипулирования данными баз сетевого типа можно отнести следующие:

· поиск записи в БД,

· переход от предка к первому потомку,

· переход от потомка к предку,

· создание новой записи,

· удаление текущей записи,

· обновление текущей записи,

· включение записи в связь,

· исключение записи из связи,

· изменение связей и т.д.

Достоинством сетевой модели данных является возможность эффективной реализации по показателям затрат времени и оперативности. В сравнении с иерархической моделью сетевая модель предоставляет большие возможности в смысле допустимости образования произвольных связей.

Недостатком сетевой модели данных является высокая сложность и жесткость схемы БД, построенной на ее основе, а также сложность для понимания и выполнения операций обработки данных в БД для обычных пользователей. Кроме того, в сетевой модели данных ослаблен контроль целостности связей вследствие допустимости установления произвольных связей между записями.

Системы на основе сетевой модели не получили широкого распространения на практике. Наиболее известными сетевыми СУБД являются следующие: IDMS, db_VistaIII, СЕТЬ, СЕТОР и КОМПАС.

2.3. Реляционная модель

Реляционная модель данных была предложена сотрудником фирмы IBM Эдгаром Коддом и основывается на понятии отношение (relation).

Отношение представляет собой множество элементов, называемых кортежами. Подробно теоретическая основа реляционной модели рассматривается в следующем разделе. Наглядной формой представления отношения является привычная для человеческого восприятия двумерная таблица.

Таблица имеет строки (записи) и столбцы (колонки). Каждая строка таблицы имеет одинаковую структуру и состоит из полей. Строкам таблицы соответствуют кортежи, а столбцам – атрибуты отношения.

С помощью одной таблицы удобно описывать сведения о группах однородных (имеющих одинаковые свойства) объектов, явлений или процессов реального мира. Каждая строка таблицы содержит сведения о конкретном объекте, явлении или процессе. Строка (запись) имеет одинаковую структуру и описывает с помощью полей свойства объектов. Например, таблица может содержать сведения о группе обучаемых, о каждом из которых известны следующие характеристики: фамилия, имя и отчество, пол, дата рождения, адрес проживания. Поскольку в рамках одной таблицы не удается описать все данные из предметной области, то создается несколько таблиц, между которыми устанавливаются связи.

Физическое размещение данных в реляционных базах на внешних носителях легко осуществляется с помощью обычных файлов.

Преимущества реляционной модели данных заключаются в простоте, понятности и удобстве физической реализации на ЭВМ. Именно простота и понятность для пользователя явились основной причиной их широкого использования.

Основными недостатками реляционной модели являются следующие: отсутствие стандартных средств идентификации отдельных записей и сложность описания иерархических и сетевых связей.

Примерами реляционных СУБД являются следующие: dBaseIIIPlus dBaseIV (фирма Ashton-Tate), DB2 (IBM), R:BASE (Microrim), FoxPro ранних версий и FoxBase (Fox Software), Paradox и dBASE for Windows (Borland), FoxPro более поздних версий, Visual FoxPro и Access (Microsoft), Clarion (Clarion Software), Ingres (ASK Computer System) и Oracle (Oracle).

Последние версии реляционных СУБД имеют некоторые свойства объектно-ориентированных систем. Такие СУБД часто называют объектно-реляционными. Примером такой системы можно считать Oracle 8.x.

2.4. Постреляционная модель

Классическая реляционная модель предполагает неделимость данных, хранящихся в полях записей таблиц. Это означает, что информация в таблице представляется в первой нормальной форме. Существует ряд случаев, когда это ограничение мешает эффективной реализации приложений.

Постреляционная модель данных представляет собой расширенную реляционную модель, снимающую ограничение неделимости данных, хранящихся в записях таблиц. Постреляционная модель данных допускает многозначные поля – поля, значения которых состоят из подзначений. Набор значений многозначных полей считается самостоятельной таблицей, встроенной в основную таблицу.

На рис. 2.6 на примере информации о накладных и товарах для сравнения приведено представление одних и тех же данных с помощью реляционной (а) и постреляционной (б) моделей. Таблица Накладные содержит данные о номерах накладных и номерах покупателей. В таблице Накладные_Товары содержатся данные о каждой из накладных: номер накладной, название товара и количество товара. Таблица Накладные связана с таблицей Накладные_Товары по полю Номер накладной.

Как видно из рисунка, по сравнению с реляционной моделью в постреляционной модели данные хранятся более эффективно, а при обработке не требуется выполнять операцию соединения данных их двух таблиц.

Помимо обеспечения вложенности полей постреляционная модель поддерживает ассоциированные многозначные поля (множественные группы). Совокупность ассоциированных полей называется ассоциацией. При этом в строке первое значение одного столбца ассоциации соответствует первым значениям всех других столбцов ассоциации. Аналогичным образом связаны все вторые значения столбцов и т.д.

На длину полей и количество полей в записях таблицы не накладывается требование постоянства. Это означает, что структура данных и таблиц имеют большую гибкость.

Накладные

Накладные_Товары

Накладные

Рис. 2.6. Структуры данных реляционной и постреляционной моделей

Поскольку постреляционная модель допускает хранение в таблицах ненормализованных данных, возникает проблема обеспечения целостности и непротиворечивости данных. Эта проблема решается включением в СУБД механизмов, подобных хранимым процедурам в клиент-серверных системах.

Для описания функций контроля значений в полях имеется возможность создавать процедуры (коды конверсии и коды корреляции), автоматически вызываемые до и после обращения к данным. Коды корреляции выполняются сразу после чтения данных, перед их обработкой. Коды конверсии, наоборот, выполняются после обработки данных.

Преимуществом постреляционной модели является возможность представления совокупности связанных реляционных таблиц одной постреляционной таблицей. Это обеспечивает высокую наглядность представления информации и повышение эффективности ее обработки.

Недостатком постреляционной модели является сложность решения проблемы обеспечения целостности и непротиворечивости хранимых данных.

Рассмотренная постреляционная модель данных поддерживается СУБД uniVers, Bubba, Dasdb.

2.5. Многомерная модель

Многомерный подход к представлению данных в базе появился практически одновременно с реляционным, но реально работающих многомерных СУБД (МСУБД) до настоящего времени было очень мало. С середины 90-х годов интерес к ним стал приобретать массовый характер.

Толчком послужила в 1993 году программная статья одного из основоположников реляционного подхода Э. Кодда. В ней сформулированы 12 основных требований к системам класса OLAP (OnLine Analytical Processing – оперативная аналитическая обработка), важнейшие из которых связаны с возможностями концептуального представления и обработки многомерных данных. Многомерные системы позволяют оперативно обрабатывать информацию для проведения анализа и принятия решения.

В развитии концепции ИС можно выделить следующие два направления:

· системы оперативной (транзакционной) обработки;

· системы аналитической обработки (системы принятия решений).

Реляционные СУБД предназначались для информационных систем оперативной обработки информации и в этой области были весьма эффективны. В системах аналитической обработки они показали себя несколько неповоротливыми и недостаточно гибкими. Более эффективными здесь оказываются многомерные СУБД.

Многомерные СУБД являются узкоспециализированными СУБД, предназначенными для интерактивной аналитической обработки информации. Раскроем основные понятия, используемые в этих СУБД: агрегируемость, историчность, прогнозируемость данных.

Агрегируемость данных означает рассмотрение информации на различных уровнях ее обобщения. В информационных системах степень детальности представления информации для пользователя зависит от его уровня: аналитик, пользователь-оператор, управляющий, руководитель.

Историчность данных предполагает обеспечение высокого уровня статичности(неизменности) собственно данных и их взаимосвязей, а также обязательность привязки данных ко времени.

Статичность данных позволяет использовать при их обработке специализированные методы загрузки, хранения, индексации и выборки.

Временная привязка данных необходима для частого выполнения запросов, имеющих значения времени и даты в составе выборки. Необходимость упорядочения данных по времени в процессе обработки и представления данных пользователю накладывает требования на механизмы хранения и доступа к информации. Так для уменьшения времени обработки запросов желательно, чтобы данные всегда были отсортированы в том порядке, в котором они наиболее часто запрашиваются.

Прогнозируемость данных подразумевает задание функций прогнозирования и применение их к различным временным интервалам.

Многомерность модели данных означает не многомерность визуализации цифровых данных, а многомерное логическое представление структуры информации при описании и в операциях манипулирования данными.

По сравнению с реляционной моделью многомерная организация данных обладает более высокой наглядностью и информативностью.

Если речь идет о многомерной модели с мерностью больше двух, то не обязательно визуально информация представляется в виде многомерных объектов (трех-, четырех- и более мерных гиперкубов). Пользователю и в этих случаях более удобно иметь дело с двумерными таблицами или графиками. Данные при этом представляют собой «вырезки» (точнее «срезы») из многомерного хранилища данных, выполненные с разной степенью детализации.

Рассмотрим основные понятия многомерных моделей данных, к числу которых относятся измерение и ячейка.

Измерение (Dimensiom) – это множество однотипных данных, образующих одну из граней гиперкуба. Примерами наиболее часто используемых временных измерений являются Дни, Месяцы, Кварталы и годы. В качестве географических измерений широко употребляются Города, Районы, Регионы и Страны. В многомерной модели данных измерения играют роль индексов, служащих для идентификации конкретных значений в ячейках гиперкуба.

Ячейка (Cell) или показатель- это поле, значение которого однозначно определяется фиксированным набором измерений. Тип поля чаще всего определен как цифровой. В зависимости от того, как формируются значения некоторой ячейки, обычно она может быть переменной (значения изменяются и могут быть загружены из внешнего источника данных или сформированы программно) либо формулой (значения, подобно формульным ячейкам электронной таблицы, вычисляются по заранее заданным формулам).

В примере на рис. 2.8 каждое значение ячейки Объем продаж однозначно определяется комбинацией временного измерения (Месяц продаж) и модели автомобиля. Пример трехмерной модели данных приведен на рис. 2.9.

1999

Петров 9999999вароыоро

Объем продаж

«Жигули» «Москвич»

Измерения:

Время (год) – 1994, 1995, 1996

Менеджер – Петров, Смирнов, Яковлев

Модель – «Волга», «Жигули», «Москвич»

Показатель: Объем продаж

Рис. 2.9. Пример трехмерной модели

В существующих МСУБД используются два основных варианта (схемы) организации данных: гиперкубическая и поликубическая.

В полукубической схеме предполагается, что в СУБД может быть определено несколько гиперкубов с различной размерностью и с различными измерениями в качестве граней. Примером системы, поддерживающей поликубический вариант БД, является сервер Oracle Express Server.

В случае гиперкубической схемы предполагается, что все показатели определяются одним и тем же набором измерений. Это означает, что при наличии нескольких гиперкубов БД все они имеют одинаковую размерность и совпадающие измерения. Очевидно, в некоторых случаях информация в БД может быть избыточной (если требовать обязательное заполнение ячеек).

В случае многомерной модели данных применяется ряд специальных операций, к которым относятся: формирование «среза», «вращение», агрегация и детализация.

«Срез» (Slice) представляет собой подмножество гиперкуба, полученное в результате одного или нескольких измерений. Формирование «срезов» выполняется для ограничения используемых пользователем значений, так как все значения гиперкуба практически никогда одновременно не используются. Например, если ограничить значения измерения Модель автомобиля в гиперкубе (рис.2.9) маркой «Жигули», то получится двухмерная таблица продаж этой марки автомобиля различными менеджерами по годам.

Операция «вращение» (Rotate) применяется при двумерном представлении данных. Суть ее заключается в изменении порядка измерений при визуальном представлении данных. Так, «вращение» двумерной таблицы, показанной на рис.2.8б, приведет к изменению ее вида таким образом, что по оси Х будет марка автомобиля, а по оси Y – время.

Операцию «вращения» можно обощить и на многомерный случай, если под ней понимать процедуру изменения порядка следования измерений. В простейшем случае, это может быть взаимная перестановка двух произвольных измерений.

Операции «агрегация» (Drill Up) и “детализация” (Drill Down) означают соответственно переход к более общему или к более детальному представлению информации пользователю из гиперкуба.

Для иллюстрации смысла операции «агрегация» предположим, что у нас имеется гиперкуб, в котором помимо измерений гиперкуба, приведенного на рис. 2.9, имеются еще измерения: Подразделение, Регион, Фирма, Страна. Заметим, что в этом случае в гиперкубе существует иерархия (снизу вверх) отношений между измерениями: Менеджер, Подразделение, Регион, Фирма, Страна.

Пусть в описанном гиперкубе определено, насколько успешно в 2000 году менеджер Петров продавал автомобили «Жигули» и «Волга». Тогда, поднимаясь на уровень выше по иерархии, с помощью операции «агрегация» можно выяснить, как выглядит соотношение продаж этих же моделей на уровне подразделения, где работает Петров.

Основным достоинством многомерной модели данных является удобство и эффективность аналитической обработки больших объемов данных, связанных со временем. При организации обработки аналогичных данных на основе реляционной модели происходит нелинейный рост трудоемкости операций в зависимости от размерности БД и существенное увеличение затрат оперативной памяти на индексацию.

Недостатком многомерной модели данных является ее громоздкость при решении простейших задач оперативной обработки информации.

Примерами систем, поддерживающими многомерные модели данных, являются Essbase (Arbor Software), Media Multi-matrix (Speedware), Oracle Express Server (Oracle), Cache (InterSystem). Некоторые программные продукты, например Media/MR (Speedware), позволяют одновременно работать с многомерными и с реляционными БД. В СУБД Oracle, в которой внутренней моделью данных является многомерная модель, реализованы три способа доступа к данным: прямой (на уровне узлов многомерных матриц), объектный и реляционный.

2.6. Объектно-ориентированная модель

В объектно-ориентированной модели при представлении данных имеется возможность идентифицировать отдельные записи базы. Между записями базы данных и функциями их обработки устанавливаются взаимосвязи с помощью механизмов, подобных соответствующим средствам в объектно-ориентированных языках программирования.

Стандартизованная объектно-ориентированная модель описана в рекомендациях стандарта ODMG-93 (Object Database Management Group – группа управления объектно-ориентированными базами данных). Реализовать в полном объеме рекомендации ODMG-93 пока не удается. Для иллюстрации ключевых идей рассмотрим несколько упрощенную модель объектно-ориентированной БД.

Структура объектно-ориентированной БД графически представима в виде дерева, узлами которого являются объекты. Свойства объектов описываются некоторым стандартным типом (например, строковым – string) или типом, конструируемым пользователем (определяется как class).

Значением свойства типа string является строка символов. Значение свойства типа class есть объект, являющийся экземпляром соответствующего класса. Каждый объект-экземпляр класса считается потомком объекта, в котором он определен как свойство. Объект-экземпляр класса принадлежит своему классу и имеет одного родителя. Родовые отношения в БД образуют иерархию объектов.

Пример логической структуры объектно-ориентированной БД библиотечного дела приведен на рис. 2.10.

Здесь объект типа БИБЛИОТЕКА является родительским для объектов-экземпляров классов АБОНЕНТ, КАТАЛОГ и ВЫДАЧА. Различные объекты типа КНИГА могут иметь одного или разных родителей. Объекты типа КНИГА, имеющие одного и того же родителя, должны различаться по крайней мере инвентарным номером (уникален для каждого экземпляра книги), но имеют одинаковые значения свойств шифр книги, УДК, название и автор.

Логическая структура объектно-ориентированной БД внешне похожа на структуру иерархической БД. Основное отличие между ними состоит в методах манипулирования данными.

Для выполнения действий над данными в рассматриваемой модели БД применяются логические операции, усиленные объектно-ориентированными механизмами инкапсуляции, наследования и полиморфизма. Ограниченно могут применяться операции, подобные командам SQL (например, для создания БД).

Создание и модификация базы данных сопровождается автоматическим формированием и последующей корректировкой индексов (индексных таблиц), содержащих информацию для быстрого поика данных.Рассмотрим кратко понятия инкапсуляция, наследования и полиморфизма применительно к объектно-ориентированной модели БД.

Инкапсуляция ограничивает область видимости имени свойства пределами того объекта, в котором оно определено. Так, если в объект типа КАТАЛОГ добавить свойство, задающее телефон автора книги и имеющее название телефон, то мы получим одноименные свойства у объектов АБОНЕНТ и КАТАЛОГ. Смысл такого свойства будет определяться тем объектом, в котором оно инкапсулировано.

Наследование , наоборот, распространяет область видимости свойства на всех потомков объекта. Так, всем объектам типа КНИГА, являющимся потомками объекта типа КАТАЛОГ, можно приписать свойства объекта-родителя: шифр книги, УДК, название, автор. Если необходимо расширить действие механизма наследования на объекты, не являющиеся непосредственно родственниками (например, между двумя потомками одного родителя), то в их общем предке определяется абстрактное свойство типа abs. Так, определение абстрактных свойств билет и номер в объекте БИБЛИОТЕКА приводит к наследованию этих свойств всеми дочерними объектами АБОНЕНТ, КНИГА и ВЫДАЧА. Не случайно поэтому значения свойства билет классов АБОНЕНТ и ВЫДАЧА, показанных на рисунке, будут одинаковыми – 00015.

Полиморфизм в объектно-ориентированных языках программирования означает способность одного и того же программного кода работать с разнотипными данными. Другими словами, он означает допустимость в объектах разных типов иметь методы (процедуры или функции) с одинаковыми именами. Во время выполнения объектной программы одни и те же методы оперируют с разными объектами в зависимости от типа аргумента. Применительно к нашей объектно-ориентированной базе данных полиморфизм означает, что объекты класса КНИГА, имеющие разных родителей из класса КАТАЛОГ, могут иметь разный набор свойств. Следовательно, программы работы с объектами класса КНИГА могут содержать полиморфный код.Поиск в объектно-ориентированной БД состоит в выяснении сходства между объектом, задаваемым пользователем, и объектами, хранящимися в БД. Определяемый пользователем объект, называемый объектом-целью (свойство объекта имеет тип goal), в общем случае может представлять собой подмножество всей хранимой в БД иерархии объектов. Объект-цель, а также результат выполнения запроса могут храниться в самой базе. Пример запроса о читателях, получивших в библиотеке хотя бы одну книгу, показан на рис. 2.11.



Рис. 2.11. Фрагмент БД с объектом-целью

Основным достоинством объектно-ориентированной модели данных в сравнении с реляционной является возможность отображения информации о сложных взаимосвязях объектов. Объектно-ориентированная модель данных позволяет идентифицировать отдельную запись базы данных и определять функции их обработки.

Недостатками объектно-ориентированной модели являются высокая понятийная сложность, неудобство обработки данных и низкая скорость выполнения запросов.

В 90-е годы существовали экспериментальные прототипы объектно-ориентированных систем управления базами данных. В настоящее время такие системы получили широкое распространение, в частности, к ним относятся следующие СУБД: POET (POET Software), Jasmine (Computer Associates), Versant (Versant Technologies), Q2 (Ardent Software), ODB-Jupiter (научно-производственный центр “Интелтек Плюс”), а также Iris, Orion, Postgres.


РЕЛЯЦИОННАЯ МОДЕЛЬ ДАННЫХ

3.1. Основные определения

Реляционная модель данных была предложена Е. Коддом в 1970 году. В основе реляционной модели данных лежит понятие отношения.

Математически отношение определяется следующим образом. Пусть даны n множеств D1,D2,…,Dn. Тогда R есть отношение над этими множествами, если R есть множество упорядоченных кортежей длины n вида (d1,d2,…,dn), где d1 – элемент из D1, d2 – элемент из D2, dn – элемент из Dn. D1,D2,…,Dn называют доменами отношения R. Заметим, что данное определение эквивалентно определению декартова произведения множеств D1,D2,…,Dn.

Дадим определение отношения с точки зрения теории обработки данных. Отношение – подмножество декартова произведения одного или более доменов. Домен – множество возможных значений конкретного атрибута. Атрибут – свойство объекта, явления или процесса. Примеры атрибутов: фамилия, имя, отчество, дата рождения. Кортеж - элемент отношения, это отображение имен атрибутов в значения, взятые из соответствующих доменов. Конечное множество кортежей образует отношение. Если отношение создается из n доменов, то каждый кортеж имеет n компонент.

Поясним данные определения на примерах.

Пример 1. Пусть имеется два домена:

D1 = (0,1); D2 = (a,b,c).

Построим декартово произведение доменов D1,D2:

D1 x D2 = {(0,a),(0,b),(0,c),(1,a),(1,b),(1,c)}.

В качестве отношения, построенного на доменах D1, D2, можно выбрать, например, следующее:

R = {(0,a),(0,c),(1,b),(1,c)}.

Отношение R состоит из четырех кортежей, в каждом кортеже по два элемента, первый выбирают из домена D1, второй – из домена D2.

Пример 2. Пусть имеется четыре домена:

D1 – множество целых чисел, например, множество номеров деталей (101, 34, 23, 109, 147).

D2 – множество символьных строк, например, множество названий деталей (втулка, кронштейн, скоба, муфта, болт).

D3 – множество символьных строк, например, множество названий видов обработки (холодная штамповка, металлическое литье, литье из пластмасс, механическая обработка).

D4 – множество вещественных чисел, например, множество весов деталей (45.8, 6.9, 123, 69.3, 5.2, 2.34).

В качестве отношения, построенного на доменах D1, D2, D3, D4, можно выбрать, например, следующее:

R = { (34, втулка, литье из пластмасс, 69.3), (23, кронштейн, холодная штамповка, 45.8), (101, болт, механическая обработка, 5.2)}.

Отношение R состоит из трех кортежей, в каждом кортеже по четыре элемента.

Удобно представить отношение как таблицу, где каждая строка есть кортеж, содержащий данные о конкретном объекте, явлении или процессе. Каждый столбец таблицы – это домен, содержащий возможные значения одного из свойств объекта, процесса или явления.

Например:Детали

Следующие наборы терминов эквивалентны:

отношение, таблица, файл;

кортеж, строка, запись:

атрибут, элемент столбца, поле.

Поименованный список имен атрибутов отношения называют схемой отношения . Пример схемы:

Детали (Номер детали , Название детали, Вид обработки, Вес).

Ключевой атрибут в схеме отношения подчеркивают.

Совокупность схем отношений, используемых для представления информации, называется схемой реляционной базы данных .

Число столбцов в отношении называют степенью . Текущее число кортежей в отношении называют мощностью . Степень отношения обычно не изменяется после создания отношения, но мощность будет колебаться по мере добавления новых и удаления старых кортежей.

Реляционная база данных – это совокупность отношений, содержащих всю информацию, которая должна храниться в базе данных.

Пример фрагмента базы данных:

Отношение 1. Радиоэлементы (транзисторы)

Отношение 2. Склад

Каждое отношение имеет ключ. Ключ (первичный ключ, ключ отношения, ключевой атрибут) – это атрибут или группа атрибутов, которые позволяют однозначно идентифицировать кортеж в отношении. Если ключ составной (состоит из двух и более атрибутов), то он должен быть минимальным . Это значит, что если один произвольный атрибут исключить из составного ключа, оставшихся атрибутов будет недостаточно для однозначной идентификации отдельных кортежей. Значения ключа в отношении (таблице) должно быть уникальными, то есть не должны существовать два или более кортежа (записи) с одинаковым значением ключа. Если в отношении нет полей, значения в которых уникальны, для создания ключа вводят обычно дополнительное числовое поле, содержащее порядковые номера записей.

В отношении "Радиоэлементы (транзисторы)" ключом является Тип прибора, в отношении "Склад" - Номер стеллажа, Тип прибора.

Возможны случаи, когда отношение имеет несколько комбинаций атрибутов, каждая из которых однозначно определяет все кортежи отношения. Все эти комбинации атрибутов являются возможными ключами отношения. Любой из возможных ключей может быть выбран как первичный.

Ключи обычно используют для достижения следующих целей:

исключения дублирования значений в ключевых атрибутах;

упорядочения кортежей;

ускорения работы с кортежами отношения;

организации связывания таблиц.

Пусть в отношении R1 имеется не ключевой атрибут А, значения которого являются значениями ключевого атрибута В другого отношения R2. Тогда говорят, что атрибут А отношения R1 (атрибут В отношения R2) есть внешний ключ . С помощью внешних ключей устанавливаются связи между отношениями.

Классы отношений . Отношения реляционной базы данных в зависимости от содержания подразделяются на два класса: объектные отношения и связные отношения.

Объектные отношения хранят данные о группах однородных объектов, явлений или процессов, имеющих однотипные характеристики. В объектном отношении ключ называют первичным, или, просто, ключом отношения.

Связное отношение хранит данные о связях между объектными отношениями. Связное отношение содержит ключи связанных объектных отношений и данные, количественно или качественно характеризующие связь. Ключи связных отношений называют внешними ключами, поскольку они являются первичными ключами других отношений. Реляционная модель накладывает на внешние ключи ограничение, называемое ссылочной целостностью. Это означает, что каждому значению внешнего ключа должен соответствовать кортеж объектного отношения. Без этого возможна ситуация, когда внешний ключ ссылается на объект, о котором ничего не известно.

Рассмотрим пример объектных и связных отношений.

Объектное отношение "Детали"

Объектное отношение "Материалы"

Связное отношение "Технологический процесс"

В отношении "Детали" первичный ключ – номер детали. В отношении "Материал" первичный ключ – код материала. В отношении "Технологический процесс" внешний ключ – номер детали, код материала. Атрибут "Норма расхода материала на деталь" – количественная характеристика связи между деталью и материалом.

Поскольку не всякой таблице можно поставить в соответствие отношение, приведем условия, выполнение которых позволяет считать таблицу отношением.

1. Все строки таблицы должны быть уникальны, т.е. не может быть строк с одинаковыми первичными ключами.

2. Имена столбцов таблицы должны быть различны, а значения их простыми, т.е. недопустима группа значений в одном столбце одной строки.

3. Все строки одной таблицы должны иметь одинаковую структуру, с соответствующими именами и типами столбцов.

4. Порядок размещения строк в таблице может быть произвольным.

Индексирование . Определение ключа для таблицы означает автоматическую сортировку записей, контроль отсутствия повторений значений в ключевых полях записей и повышение скорости выполнения операций поиска в таблице. Для реализации этих функций в СУБД применяют индексирование. Индекс – это средство ускорения операции поиска записей в таблице, а следовательно, и других операций, использующих поиск: извлечение, модификация, сортировка и т.д. Таблицу, для которой используется индекс, называют индексированной. Ключевые поля таблицы во многих СУБД как правило индексируются автоматически. Индексы, созданные для ключей называют первичными индексами .

Индексы, создаваемые пользователем для не ключевых полей, иногда называют вторичными (пользовательскими) индексами . Введение таких индексов не изменяет физического расположения записей таблицы, но влияет на последовательность просмотра записей.

Главная причина повышения скорости выполнения различных операций в индексированных таблицах состоит в том, что основная часть работы производится с небольшими индексными файлами, а не с самими таблицами. Наибольший эффект повышения производительности работы с индексированными таблицами достигается для значительных по объему таблиц. Индексирование требует небольшого дополнительного места на диске и незначительных затрат процессора на изменение индексов в процессе работы.

Связи между отношениями (таблицами). Обычно база данных представляет собой набор связанных таблиц.Связывание таблиц дает следующие преимущества:

многие СУБД при связывании таблиц автоматически выполняют контроль целостности вводимых в базу данных в соответствии с установленными связями, что повышает достоверность хранимой в БД информации;

облегчается доступ к данным. Связывание таблиц при выполнении таких операций как поиск, просмотр, редактирование, выборка и подготовка отчетов с использованием информации из разных таблиц уменьшает количество явных обращений к таблицам данных и число манипуляций в каждой из них.

Существует несколько разновидностей связей между отношениями. Связанные отношения часто взаимодействуют по принципу главная и подчиненная таблицы. Главную таблицу можно еще называть родительской, а подчиненную – дочерней. Одна и та же таблица может быть главной по отношению к одной таблице базы данных и дочерней по отношению к другой.

Связь «один-ко-многим» означает, что одной записи в родительской таблице может соответствовать несколько записей (в том числе и одна) в дочерней таблице. В родительской таблице могут быть записи, для которых в данный момент нет соответствующих записей в дочерней таблице. Различают также жесткую связь «один-ко-многим», когда каждой записи в родительской таблице должны соответствовать записи в дочерней таблице.

Связь «один-ко-многим» является самой распространенной для реляционных баз данных. Пример связи: таблицы «Студенты» и «Экзамены» могут быть связаны связью «один-ко-многим» по полю «Номер Зачетки». Данная связь будет означать, что одна запись о студенте из таблицы «Студенты» может быть связана с несколькими записями о сдаче экзаменов данным студентом в таблице «Экзамены».

Связь «один-к-одному» имеет место, когда одной записи в родительской таблице соответствует только одна запись в дочерней таблице. Данная связь встречается редко и означает, что информация из двух таблиц могла бы быть объединена в одну. Наличие двух таблиц говорит о желании разделить основную и второстепенную информацию на два отношения. Например, информация о студентах может быть разделена на две таблицы «Студенты» и «Дополнительные сведения», которые будут связаны связью «один-к-одному» по полю «Номер зачетки». Связь «один-к-одному» приводит к тому, что для чтения связанной информации в нескольких таблицах приходится производить несколько операций чтения, что замедляет получение нужной информации. Связь «один-к-одному» может быть жесткой и нежесткой.

Третий вид связи – связь «многие-ко-многим» . Данный вид связи означает, что несколько записей одной таблицы связаны с несколькими записями другой таблицы и наоборот. Например: между таблицами «Учебные группы и дисциплины» и «Преподаватели» может существовать связь «многие-ко-многим». Это означает, что каждый преподаватель может вести несколько предметов и, в то же время, один и тот же предмет могут вести несколько преподавателей.

Некоторые СУБД не поддерживают связи «многие-ко-многим» на уровне ссылочной целостности, хотя и позволяют реализовывать ее в таблицах неявным образом. Считается, что базу данных всегда можно перестроить так, чтобы любая связь «многие-ко-многим» была заменена на одну или более связей «один-ко-многим».

Обеспечение целостности данных . Одним из основополагающих понятий в технологии баз данных является понятие целостности. В общем случае это понятие прежде всего связано с тем, что база данных отражает в информационном виде некоторый объект реального мира или совокупность взаимосвязанных объектов реального мира. В реляционной модели объекты реального мира представлены в виде совокупности взаимосвязанных отношений. Под целостностью будем понимать соответствие информационной модели предметной области, хранимой в базе данных, объектам реального мира и их взаимосвязям в каждый момент времени. Любое изменение в предметной области, значимое для построенной модели, должно отражаться в базе данных, и при этом должна сохраняться однозначная интерпретация информационной модели в терминах предметной области.

Поддержка целостности в реляционной модели данных в ее классическом понимании включает в себя 3 аспекта.

Во-первых, это поддержка структурной целостности , которая трактуется как то, что реляционная СУБД должна допускать работу только с однородными структурами данных типа «реляционное отношение». При этом понятие «реляционное отношение» должно удовлетворять всем ограничениям, накладываемым на него в классической теории реляционной БД (отсутствие дубликатов кортежей, обязательное наличие первичного ключа, отсутствие понятия упорядоченности кортежей).

В дополнение к структурной целостности необходимо рассмотреть проблему неопределенных Null значений. Неопределенное значение интерпретируется в реляционной модели как значение, неизвестное на данный момент времени. Это значение при появлении дополнительной информации в любой момент времени может быть заменено на конкретное значение. При сравнении неопределенных значений не действуют стандартные правила сравнения: одно неопределенное значение никогда не считается равным другому неопределенному значению. Для выявления равенства значения некоторого атрибута неопределенному значению применяются специальные стандартные предикаты:

<имя атрибута> IS NULL и <имя атрибута> IS NOT NULL.

Если в данном кортеже (в данной строке) указанный атрибут имеет неопределенное значение, то предикат IS NULL принимает значение TRUE (Истина), а предикат IS NOT NULL – FALSE (Ложь), в противном случае предикат IS NULL принимает значение FALSE, а предикат IS NOT NULL принимает значение TRUE.

Введение Null значений вызвало необходимость модификации классической двузначной логики и превращения ее в трехзначную.

Во-вторых, это поддержка языковой целостности , которая состоит в том, что реляционная СУБД должна обеспечивать языки описания и манипулирования данными не ниже стандарта SQL. Не должны быть доступны иные низкоуровневые средства манипулирования данными, не соответствующие стандарту.

В-третьих, это поддержка ссылочной целостности (Declarative Referential Integrity, DRI).

Ссылочная целостность – это совокупность связей между отдельными таблицами во всей базе данных. Нарушение хотя бы одной такой связи делает информацию в базе данных недостоверной. СУБД обычно блокирует действия, которые нарушают целостность связей между таблицами, т.е. нарушают ссылочную целостность. Обеспечение ссылочной целостности означает, что СУБД при корректировке базы данных обеспечивает для связанных таблиц контроль за соблюдением следующих правил:

в подчиненную таблицу не может быть добавлена запись с несуществующим в главной таблице значением ключа связи;

в главной таблице нельзя удалить запись, если не удалены связанные с ней записи в подчиненной таблице;

изменение значений ключа связи в записи главной таблицы невозможны, если в подчиненной таблице имеются связанные с ней записи.

При попытке пользователя нарушить эти условия в операциях добавления и удаления записей или обновления ключевых данных в связанных таблицах СУБД должна выводить сообщения об ошибке и не допускать выполнения этих операций.

Чтобы предотвратить потерю ссылочной целостности, используется механизм каскадных изменений. Он состоит в обеспечении следующих действий:

при изменении поля связи в записи родительской таблицы следует синхронно изменить значения полей связи в соответствующих записях дочерней таблицы;

при удалении записи в родительской таблице следует удалить соответствующие записи в дочерней таблице.

Структурная, языковая и ссылочная целостности не определяют семантику БД, не касаются содержания базы данных, поэтому вводится понятие семантической поддержки целостности .

Семантическая поддержка может быть обеспечена двумя путями: декларативным и процедурным путем . Декларативный путь связан с наличием механизмов в рамках СУБД, обеспечивающих проверку и выполнение ряда декларативно заданных правил-ограничений, называемых чаще всего «бизнес-правилами» (Business Rules) или декларативными ограничениями целостности.

Выделяются следующие виды декларативных ограничений целостности:

· Ограничения целостности атрибута : значение по умолчанию, задание обязательности или необязательности значений (Null), задание условий на значения атрибутов.

Задание значения по умолчанию означает, что каждый раз при вводе новой строки в отношение, при отсутствии данных в указанном столбце этому атрибуту присваивается именно значение по умолчанию. Например, при вводе новых записей в поле год издания необходимо ввести значение текущего года. Для MS Access это выражение будет иметь вид:

Здесь NOW() – функция, возвращающая значение текущей даты, YEAR(data) – функция, возвращающая значение года для даты, указанной в качестве параметра.

Другой пример, в качестве условия на значение для года издания надо задать выражение, которое будет проверять попадание года издания в интервал от 1960 года до текущего года. Для MS Access это выражение будет выглядеть следующим образом:

Between 1960 AND YEAR(NOW())

В СУБД MS SQL Server значение по умолчанию записывается в качестве «бизнес-правила». В этом случае будет использоваться выражение, в котором явным образом должно быть указано имя соответствующего столбца, например:

YEAR_PUBL>=1960 AND YEAR_PUB<= YEAR(GETDATE())

Здесь GETDATE() – функция MS SQL Server, возвращающая значение текущей даты, YEAR_PUB – имя столбца, соответствующего году издания.

· Ограничения целостности, задаваемые на уровне доменов . Эти ограничения удобны, если в базе данных присутствуют несколько столбцов разных отношений, которые принимают значения из одного и того же множества допустимых значений. Некоторые СУБД разрешают определять отдельно домены, задавать тип данных для каждого домена и задавать соответственно ограничения в виде бизнес-правил для доменов. В этом случае для атрибутов задается принадлежность к тому или иному домену. Иногда доменная структура выражена неявно. Так, например, в MS SQL Server вместо понятия домена вводится понятие типа данных, определенных пользователем, но смысл этого типа данных фактически эквивалентен смыслу домена. Удобно задать ограничение на значение на уровне домена, тогда оно автоматически будет выполняться для всех атрибутов, принимающих значения из этого домена. Если меняется ограничение, то его замена проводится один раз на уровне домена, а все атрибуты, которые принимают значения из этого домена, будут автоматически работать по новому правилу.

· Ограничения целостности, задаваемые на уровне отношения. Некоторые семантические правила невозможно преобразовать в выражения, которые будут применимы только к одному столбцу. Например, при создании отношения Читатели потребовать наличия по крайней мере одного телефонного номера (домашнего или рабочего) для быстрой связи с читателем. Для MS Access или MS SQL Server соответствующее выражение будет следующим:

HOME_PHON IS NOT NULL OR WORK_PHON IS NOT NULL

· Ограничения целостности, задаваемые на уровне связи между отношениями : задание обязательности связи, принципов каскадного удаления и каскадного обновления данных, задание поддержки ограничений по мощности связи. Эти виды ограничений могут быть выражены заданием обязательности или необязательности значений внешних ключей во взаимосвязанных отношениях.

Декларативные ограничения целостности относятся к ограничениям, которые являются немедленно проверяемыми. Есть ограничения целостности, которые являются откладываемыми. Эти ограничения целостности поддерживаются механизмом транзакций и триггеров.

Модель данных в общем случае описывает набор базовых признаков, которыми должны обладать все конкретные СУБД и управляемые ими БД, основанные на этой модели.

Элементы реляционной модели

Реляционная модель данных (РМД) некоторой предметной области представляет собой набор отношений, изменяющихся во времени. При создании информационной системы совокупность отношений позволяет хранить данные об объектах предметной области и моделировать связи между ними. Элементы РМД и формы их представления приведены в табл. 19.1.

Таблица 19.1

Элементы реляционной модели

Важнейшим является понятие отношения, которое представляет собой двумерную таблицу, содержащую некоторые данные.

Сущность есть объект любой природы, данные о котором хранятся в базе данных. Данные о сущности хранятся в отношении.

Атрибуты представляют собой свойства, характеризующие сущность.

Математически отношение можно описать следующим образом. Пусть даны n множеств D1, D2, D3, ... Dn, тогда отношение R есть множество упорядоченных кортежей ,гдеdk Dk, a D1, D2, D3,... Dn - домены отношения R.

На рис. 19.2 приведен пример представления отношения СОТРУДНИК.

Множество всех значений каждого атрибута отношения образует домен. Отношение СОТРУДНИК включает 4 домена. Домен 1 содержит фамилии всех сотрудников,домен 2 - номера всех отделов фирмы,домен 3 - название всех должностей,домен 4 - даты рождения всех сотрудников. Каждый домен образует значения одного типа, например, числовые или символьные.

Отношение СОТРУДНИК содержит 3 кортежа. Кортеж рассматриваемого отношения состоит из 4-х элементов, каждый из которых выбирается из соответствующего домена. Каждому кортежу соответствует строка таблицы.

Схема отношения представляет собой список имен атрибутов. Например, для приведенного примера схема отношения имеет вид СОТРУДНИК(ФИО, Отдел, Должность, Д_Рождения).

Рис. 19.2. Представление отношения СОТРУДНИК

Ключом отношения, илипервичным ключом, называется атрибут отношения, однозначно идентифицирующий каждый из его кортежей. Например, в отношении СОТРУДНИК(ФИО, Отдел, Должность, Д_Рождения) ключевым является атрибут ФИО.Ключ может бытьсоставным, т.е. состоять из нескольких атрибутов.

Существует также понятие внешнего ключа. С помощью внешних ключей устанавливаются связи между отношениями. Например, имеются два отношения СТУДЕНТ (ФИО. Группа, Специальность) и ПРЕДМЕТ(Назв.Пр. Часы), которые связаны отношением СТУДЕНТ_ПРЕДМЕТ(ФИО. Назв.Пр. Оценка) (рис. 19.3). В связующем отношении атрибуты ФИО и Назв.пр образуют составной ключ. Эти атрибуты представляют собойвнешние ключи, являющиеся первичными ключами других отношений.

Рис. 19.3. Связь отношений

Реляционная модель накладывает на внешние ключи ограничение для обеспечения целостности данных, называемое ссылочной целостностью. Это означает, что каждому значению внешнего ключа должны соответствовать строки в связываемых отношениях.

Наиболее часто таблица с отношением размещается в отдельном файле. В некоторых СУБД, например, Microsoft Access, в одном фарше размещается полностью база данных.

Ограничения и операции над отношениями

Приведем условия и ограничения, накладываемые на отношения, выполнение которых позволяет таблицу считать отношением.

    Все строки таблицы должны быть уникальны, т.е. не может быть строк с одинаковыми первичными ключами.

    В таблице не должно быть столбцов с повторяющимися именами.

    Все строки одной таблицы должны иметь одну структуру, соответствующую именам и типам столбцов.

    Имена столбцов таблицы должны быть различны, а значения их простыми, т.е. недопустима группа значений в одном столбце одной строки.

    Порядок размещения строк в таблице может быть произвольным.

К отношениям можно применять систему операций, позволяющую получать одни отношения из других. Например, результатом запроса к реляционной БД может быть повое отношение, вычисленное на основе хранящихся в базе отношений. Отсюда появляется возможность разделить обрабатываемые данные на хранимую и вычисляемую части.

Основной единицей обработки данных в реляционных БД является отношение, а не отдельные его кортежи (записи), как это принято в традиционных языках программирования.

Операции, выполняемые над отношениями, можно разделить на две группы.

Первую группу составляют операции над множествами, к которым относятся операции: объединения, пересечения, разности, деления и декартова произведения.

Вторую группу составляют специальные операции над отношениями, к которым относятся операции: проекции, соединения, выбора.

В различных СУБД реализована некоторая часть этих операций, определяющая в какой-то мере возможности данной СУБД и сложность реализации запросов к БД.

В реляционных СУБД для выполнения операций над отношениями используют две группы языков, имеющие в качестве своей математической основы реляционную алгебру иреляционное исчисление соответственно.

В реляционной алгебре операнды и результаты всех действий являются отношениями. Языки реляционной алгебры являются процедурными, так как отношение, являющееся результатом запроса к реляционной БД, вычисляется при выполнении последовательности операций над хранимыми в ней отношениями. В основном языки СУБД являются процедурными.

Языки реляционного исчисления являются непроцедурными. Запрос к БД, выполненный с использованием подобного языка, содержит лишь информацию о желаемом результате. Для этих языков характерно наличие наборов правил для записи запросов. В частности, к языкам этой группы относится SQL.

Между реляционной алгеброй и реляционным исчислением существует связь с помощью так называемой процедуры редукции, которая сводит любое выражение реляционного исчисления к набору стандартных операций реляционной алгебры и наоборот.

Министерство образования Российской Федерации Министерство образования Республики Таджикистан

Российско-Таджикский (славянский) Университет

Кафедра «И и ИС»

Курсовая работа

по дисциплине: Базы данных

на тему: Реляционная модель данных

Душанбе – 2008


План

Введение

1 Модель данных

2 Базовые понятия реляционной модели данных

3 Общие представления о модели данных

Заключение

Список используемой литературы


Введение

Человечество стремительно вступает в принципиально новую для него информационную эпоху. Существенным образом меняются все слагаемые образа жизни людей. В современном обществе уровень информатизации характеризует уровень развития государства. Начавшийся ХХI век специалисты называют веком компьютерных технологий. Их революционное воздействие касается государственных структур и институтов гражданского общества, экономической и социальной сфер, науки и образования, культуры и образа жизни людей. Многие развитые и развивающиеся страны в полной мере осознали те колоссальные преимущества, которые несет с собой развитие и распространение информационно-коммуникационных технологий. Не у кого не вызывает сомнения тот факт, что движение к информационному обществу - это путь в будущее человеческой цивилизации.

В соответствии с реляционной моделью база данных представляется в виде совокупности таблиц, над которыми могут выполняться операции, формулируемые в терминах реляционной алгебры и реляционного исчисления. В реляционной модели операции над объектами базы данных имеют теоретико-множественный характер. Концепции реляционной модели данных связаны с именем известного специалиста в области систем баз данных Е. Кодда. Именно поэтому реляционную модель данных часто называют моделью Кодда.

Ядром любой базы данных является модель данных. Модель данных представляет собой множество структур данных, ограничений целостности и операций манипулирования данными. С помощью модели данных могут быть представлены объекты предметной области и взаимосвязи между ними.


1 Модель данных

Модель данных – совокупность структур данных и операций их обработки.

Модели данных определяются:

a) способами организации данных.

b) ограничением ценности данных.

c) операциями с данными.

СУБД основывается на использовании иерархической, сетевой или реляционной модели, на комбинации этих моделей или на некотором их подмножестве.

Рассмотрим 3 основных типа моделей данных: иерархическую, сетевую и реляционную.

Иерархическая модель данных

а) Иерархическая структура представляет совокупность элементов, связанных между собой по определённым правилам. Объекты, связанные иерархическими отношениями, образуют ориентированный граф (перевёрнутое дерево), вид которого представлен на рисунке 1.

А Уровень 1

В1 В2 В3 В4 В5 Уровень 2

С1 С2 С3 С4 С5 С6 С7 С8 Уровень 3

Рис. 1

К основным понятиям иерархической структуры относятся: уровень, элемент (узел), связь.

Узел – это совокупность атрибутов данных, описывающих некоторый объект. На схеме иерархического дерева узлы представляются вершинами графа. Каждый узел на более низком уровне связан только с одним узлом, находящимся на более высоком уровне. Иерархическое дерево имеет только одну вершину (корень дерева), не подчинённую никакой другой вершине и находящуюся на самом верхнем (первом) уровне. Зависимые (подчинённые) узлы находятся на втором, третьем и т.д. уровнях. Количество деревьев в базах данных определяется числом корневых записей. К каждойдятся на втором, третьемершине и находящуюся на самом верхнем 9первом) уровне. ровне. Записи базы данных существует только 1 иерархический путь от корневой записи. Например, как видно на рисунке 1 для записи С4 путь проходит через записи А и В3.

Пример, представленный на рисунке 2 иллюстрирует использование иерархической модели базы данных. Для рассматриваемого примера иерархическая структура правомерна, т.к. каждый студент учится в определённой (только одной) группе, которая относится к определённому (только одному) институту.

b) Ограничение целостности - целостность ссылок между предком и потомком с учетом основного правила: никакой потомок не может существовать без предка.

Примеры: 1) ОКА 3)TOTAL

2)ИНЭС 4) IMS

с) Операции над данными:

Найти указанное дерево.

Перейти от одного дерева к другому.

Перейти от одной записи к другой.

Перейти от одной записи к другой в порядке обхода иерархии.

Удаление текущей записи.


Институт (специальность, название, ректор)


Рис. 3 Сетевая структура базы данных в виде графа

Студент (номер зачётной книжки , фамилия, группа)



Работа (шифр ,

руководитель,

Рис. 4.

Примером сложной сетевой структуры может служить структура базы данных, содержащей сведения о студентах, участвующих в научно – исследовательских работах (НИР). Возможно участие одного студента в нескольких НИР, а также участие нескольких студентов в разработке одной НИР. Графическое изображение описанной в примере сетевой структуры, состоящей только из двух типов записей, показано на рисунке 4. Единственное отношение представляет собой сложную связь между записями в обоих направлениях.

с) Операции над данными сетевой модели данных:

Найти конкретную запись в наборе однотипных записей.

Перейти от узла высшего уровня к первому узлу низшего по некоторой связи.

Перейти к следующему узлу по некоторой связи.

Создать новую запись.

Уничтожить запись.

Модифицировать запись.

Включить 1 связь.

Исключить из связи.

Переставить в другую связь.

Особенность сетевой модели данных: возможность осуществления навигации по связям данных, т.е. переход от просмотра реквизитов экземпляра одного типа записи к просмотру реквизитов экземпляра, связанного типом записи. Пользователю предоставляется возможность многокритериального анализа базы данных без непосредственной формализации своих информационных потребностей через формирование запросов на языке, встроенном в СУБД.

Другая сильная сторона сетевой модели данных – использование множественных типов данных для описания атрибутов информации объектов. Это позволяет создавать информационные структуры, которые представляют собой табличную форму данных.Не смотря на развитие сетевой модели данных, не получилось создать языковых программных средств на их основе, которые позволили бы в прикладных информационных системах одинаково описывать данные сетевой организации.

Реляционная модель данных.

Понятие реляционной (англ. relation – отношение) связано с разработками известного американского специалиста в области систем баз данных Е. Кодда.

2 Базовые понятия реляционной модели данных

Реляционная модель данных представляет информацию в виде совокупности связанных таблиц, которые называются отношениями или реляциями.

Тип данных – эквивалентно понятию типа данных в алгоритмических языках. Существуют:

Целочисленные типы;

Вещественные типы;

Строковые типы;

Типы данных для денежных величин;

Типы данных для временных величин;

Типы двоичных объектов (не имеет аналогов в языках программирования, и обозначаются Blob)

Наименьшая единица данных реляционной модели - это отдельное атомарное (неразложимое) для данной модели значение данных. Доменом называется множество атомарных значений одного и того же типа. Иными словами, домен представляет собой допустимое потенциальное множество значений данного типа.Понятие домена более специфично для баз данных, хотя и имеет некоторые аналогии с диапазонными типами и множествами, имеющимися в ряде языков программирования. В самом общем виде домен определяется заданием некоторого базового типа данных, к которому относятся элементы домена, и произвольного логического выражения, применяемого к элементу типа данных. Если вычисление этого логического выражения дает результат «истина», то элемент данных является элементом домена.

Следует отметить также семантическую нагрузку понятия домена: данные счита ются сравнимыми только в том случае, когда они относятся к одному домену. Если же значения двух атрибутов берутся из различных доменов, то их сравнение, вероятно, лишено смысла. Понятие домена используется далеко не во всех СУБД. В качестве примера реляци онных баз данных, использующих домены, можно привести Огасle и InterBase.

Атрибуты, схема отношения, схема базы данных

Столбцы отношения называют атрибутами, им присваиваются имена, по которым к ним затем производится обращение.

Список имен атрибутов отношения с указанием имен доменов (или типов, если домены не поддерживаются) называется схемой отношения.

Степень отношения - это число его атрибутов. Отношение степени один называют унарным, степени два - бинарным, степени три - тернарным,..., а степени п - n-арным.

Схемой базы данных называется множество именованных схем отношений.

Кортеж

Кортеж, соответствующий данной схеме отношения, представляет собой множество пар {имя атрибута, значение}, которое содержит одно вхождение каждого имени атрибута, принадлежащего схеме отношения. «Значение» является допустимым значением домена данного атрибута (или типа данных, если понятие домена не поддерживается). Тем самым степень кортежа, то есть число элементов в нем, совпадает со степенью соответствующей схемы отношения. Иными словами, кортеж - это набор именованных значений заданного типа. Схему отношения иногда называют также заголовком отношения, а отношение как набор кортежей - телом отношения. Понятие схемы отношения напоминает понятие структурного типа данных в языках про граммирования (структура в С/С++, запись в Pascal). Однако в реляционных базах данных имя схемы отношения всегда совпадает с именем соответствующего отношения-экземпляра. В классических реляционных базах данных после определения схемы базы Данных изменяются только отношения-экземпляры. В них могут появляться новые и удаляться или модифицироваться существующие кортежи. Однако во многих реализациях допускается и изменение схемы базы данных: определение новых и изменение существующих схем отношения. Это принято называть эволюцией схемы базы данных.

Ключи отношения

Поскольку отношение с математической точки зрения является множеством, а множества по определению не содержат совпадающих элементов, то никакие два кортежа отношения не могут быть дубликатами друг друга в любой произвольно заданный момент времени. Таким образом, в отношении всегда должен присутствовать некоторый атрибут (или набор атрибутов), однозначно определяющий каждый кортеж отношения и обеспечивающий уникальность строк таблицы. Такой атрибут (или набор атрибутов) называется первичным ключом отношения.

Для каждого отношения свойством уникальности обладает, по крайней мере, полный набор его атрибутов. Однако требуется обеспечить и условие минимальности. Поэтому, как правило, в отношении всегда имеется один атрибут, обладающий свойством уникальности и являющийся первичным ключом.

В зависимости от количества атрибутов, входящих в ключ, различают простые и сложные (или составные) ключи.

Простой ключ - ключ, содержащий только один атрибут. В общем случае операции объединения выполняются быстрее в том случае, когда в качестве ключаис пользуется самый короткий и самый простой из возможных типов данных. С этой точки зрения наилучшим образом подходит целочисленный тип, который имеет аппаратную поддержку для выполнения над ним логических операций.

Сложный или составной ключ - ключ, состоящий из нескольких атрибутов. Набор атрибутов, обладающий свойством уникальности, но не обладающий минимальностью, называется суперключом. Суперключ - сложный (составной) ключ с большим числом столбцов, чем необходимо для того, чтобы быть уникальным идентификатором. Такие ключи нередко используются на практике, так как избыточность может оказаться полезной пользователю.

В зависимости от того, содержит ли атрибут, являющийся первичным ключом, какую-либо информацию, различают искусственные и естественные ключи.

Искусственный или суррогатный ключ - ключ, созданный самой СУБД или пользователем с помощью некоторой процедуры, который сам по себе не содержит ин формации. Искусственный ключ используется для создания уникальных идентификаторов строк, когда сущность должна быть описана полностью, чтобы однозначно идентифицировать конкретный элемент. Искусственный ключ часто используют вместо значимого сложного ключа, который является слишком громоздким, чтобы использоваться в реальной базе данных. Система поддерживает искусственный ключ, но он никогда не показывается пользователю.

Естественный ключ - ключ, в который включены значимые атрибуты и который, таким образом, содержит информацию.

Каждый из типов первичных ключей имеет свои преимущества и недостатки; их обсуждению посвящено большое количество публикаций. Мы не будем проводить подробное их сравнение, а отметим лишь основные плюсы и минусы каждого из видов ключей.

Основными достоинствами естественных ключей является то, что они несут вполне определенную информацию и их использование не приводит к необходимости добавлять в таблицы атрибуты, значения которых не имеют никакого смысла и используются лишь для связи между отношениями. Иными словами, использование естественных ключей позволяет получить более компактную форму таблиц (в которых не будет избыточных, неинформативных данных) и более естественные связи между ними.

Основным же недостатком естественных ключей является то, что их использование весьма затруднительно в случае изменчивости предметной области. Следует пони мать, что значения атрибутов первичного ключа не должны изменяться. То есть однажды заданное значение первичного ключа для кортежа не может быть позже изменено. Такое требование ставится в основном для поддержания целостности базы данных. Связь между отношениями обычно устанавливается именно по пер вичномуключу, и его изменение приведет к нарушению этих связей или к необходимости изменения записей в нескольких таблицах. Даже в сравнительно простых базах данных это может вызвать ряд трудноразрешимых проблем. В некоторых реляционных СУБД допускается изменение первичного ключа. Иногда это бывает действительно полезно. Однако прибегать к этому следует лишь в случае крайней необходимости.

Типичным примером изменчивой предметной области, в которой для сущности невозможно определить неизменный естественный ключ, является любая область, где в качестве сущности выступает человек. Действительно, невозможно определить для человека набор атрибутов, которые были бы уникальны и неизменны на протяжении всей его жизни.

Второй, довольно существенный недостаток естественных ключей состоит в том, что, как правило, уникальные естественные ключи являются составными и содержат строковые атрибуты. Как уже отмечалось выше, максимальная скорость выполнения операций над данными обеспечивается при использовании простых целочисленных ключей. Таким образом, с точки зрения быстродействия системы естественные ключи часто оказываются неоптимальными.

Оба недостатка естественных ключей можно преодолеть, определив в отношениях суррогатные ключи, представляющие собой некоторый универсальный атрибут, как правило, целочисленного типа, который не зависит ни от предметной области, ни, тем более, от структуры отношения, которое он идентифицирует. Таким образом, можно обеспечить уникальность и неизменность ключа (раз он никаким образом не зависит от предметной области, то никогда не возникнет необходимость изменять его). Однако за это приходится платить избыточностью данных в таблицах. Следует заметить, что во многих практических реализациях реляционных СУБД до пускается нарушение свойства уникальности кортежей для промежуточных отношений, порождаемых неявно при выполнении запросов. Такие отношения являются не множествами, а мультимножествами, что в ряде случаев позволяет добиться определенных преимуществ, но иногда приводит к серьезным проблемам.

В любой из таблиц может оказаться несколько наборов атрибутов, которые можно выбрать в качестве ключа. Такие наборы называются потенциальными или альтернативными ключами.

Нередко в отношениях определяются так называемые вторичные ключи. Вторичный ключ представляет собой комбинацию атрибутов, отличную от комбинации, составляющей первичный ключ. Причем вторичные ключи не обязательно обладают свойством уникальности. При их определении могут задаваться следующие ограничения:

UNIQUE - ограничение уникальности, значения вторичных ключей при дан ном ограничении не могут дублироваться;

NOTNULL - при данном ограничении ни один из атрибутов, входящих в со став вторичного ключа, не может принимать значение NULL.

Перекрывающиеся ключи - сложные ключи, которые имеют один или несколько общих столбцов.

Связанные отношения

В реляционной модели данные представляются в виде совокупности взаимосвязанных таблиц. Подобное взаимоотношение между таблицами называется связью (rilationship). Таким образом, еще одним важным понятием реляционной модели является связь между отношениями.

При рассмотрении связанных таблиц важное значение имеет понятие внешнего ключа. Рассмотрим его более подробно.

Внешние ключи отношения

В базах данных одни и те же имена атрибутов часто используются в разных отношениях. Внешний ключ - это атрибут (или множество атрибутов) одного отношения, являющийся ключом другого (или того же самого) отношения.

Внешние ключи используются для установления логических связей между отношениями. Связь между двумя таблицами устанавливается путем присваивания значений внешнего ключа одной таблицы значениям ключа другой.

Так же как и любые другие ключи, внешние ключи могут быть простыми либо составными.

Часто связь между отношениями устанавливается по первичному ключу, то есть значениям внешнего ключа одного отношения присваиваются значения первичного ключа другого отношения. Однако это не является обязательным - в общем случае связь может устанавливаться также и с помощью вторичных ключей. Кроме того, при установлении связей между таблицами необязательно требование уникальности ключа, по которому устанавливается связь. Атрибуты внешнего ключа не обязательно должны иметь те же имена, что и атрибуты ключа, которым они соответствуют. Внешний ключ может ссылаться и на ту же таблицу, к которой он принадлежит. В этом случае внешний ключ называется рекурсивным.

Условия целостности данных

Чтобы информация, хранящаяся в базе данных, была однозначной и непротиворе чивой, в реляционной модели устанавливаются некоторые ограничительные усло вия. Ограничительные условия - это правила, определяющие возможные значе ния данных. Они обеспечивают логическую основу для поддержания корректных значений данных в базе. Ограничения целостности позволяют свести к минимуму ошибки, возникающие при обновлении и обработке данных.

· Важнейшими ограничениями целостности данных являются: категорийная целостность;ссылочная целостность.

Ограничение категорийной целостности заключается в следующем. Кортежи отношения представляют в базе данных элементы определенных объектов реального мира или, в соответствии с терминологией реляционных СУБД, категорий. Первичный ключ таблицы однозначно определяет каждый кортеж и, следовательно, каждый элемент категории. Таким образом, для извлечения данных, содержащихся в строке таблицы, или для манипулирования этими данными необходимо знать значение ключа для этой строки. Поэтому строка не может быть занесена в базу данных до тех пор, пока не будут определены все атрибуты ее первичного ключа. Это правило называется правилом категорийной целостности и кратко формулируется следующим образом: никакой атрибут первичного ключа строки не может быть пустым.

Второе условие накладывает на внешние ключи ограничения для обеспечения целостности данных, называемой ссылочной целостностью.

Если две таблицы связаны между собой, то внешний ключ таблицы должен содержать только те значения, которые уже имеются среди значений ключа, по которому осуществляется связь. Если корректность значений внешних ключей не контролируется СУБД, то может нарушиться ссылочная целостность данных.Ограничения категорийной и ссылочной целостности должны поддерживаться СУБД. Для соблюдения целостности сущности достаточно гарантировать отсут ствие в любом отношении кортежей с одним и тем же значением первичного ключа. Что же касается ссылочной целостности, то здесь обеспечение целостности выглядит несколько сложнее. При обновлении ссылающегося отношения (при вставке новых кортежей или модификации значения внешнего ключа в существующих кортежах) достаточно следить за тем, чтобы не появлялись некорректные значения внешнего ключа. А вот при удалении кортежа из отношения, на которое ведет ссылка, возможно использовать один из трех подходов, каждый из которых поддерживает целостность по ссылкам:

· первый подход заключается в том, что запрещается производить удаление кортежа, на который существуют ссылки (то есть сначала нужно либо удалитьссы лающиеся кортежи, либо соответствующим образом изменить значения их внешнего ключа);

· при втором подходе при удалении кортежа, на который имеются ссылки, во всех ссылающихся кортежах значение внешнего ключа автоматически становится неопределенным;

· третий подход (называемый также каскадным удалением) состоит в том, что при удалении кортежа из отношения, на которое ведет ссылка, из ссылающегося отношения автоматически удаляются все ссылающиеся кортежи.

В развитых реляционных СУБД обычно можно выбрать способ поддержания ссылочной целостности для каждой отдельной ситуации определения внешнего ключа. Конечно, для принятия такого решения необходимо анализировать требования конкретной прикладной области. Хотя большинство современных СУБД обеспечивает ссылочную целостность данных, все же следует помнить, что существуют реляционные СУБД, в которых не выполняются ограничения ссылочной целостности.

Типы связей между таблицами

При установлении связи между двумя таблицами одна из них будет являться глав ной (master), а вторая - подчиненной (detail). Различие между ними несколько упрощенно можно пояснить следующим образом. В главной таблице всегда доступны все содержащиеся в ней записи. В подчиненной же таблице доступны только те записи, у которых значение атрибутов внешнего ключа совпадает со значением соответствующих атрибутов текущей записи главной таблицы. Причем изменение текущей записи главной таблицы приведет к изменению множества доступных записей подчиненной таблицы, а изменение текущей записи в подчиненной таблице не вы зовет никаких изменений ни в одной из таблиц. На практике часто связывают более двух таблиц. Одна и та же таблица может быть главной по отношению к одной таблице и подчиненной по отношению к другой. Или у одной главной таблицы может находиться в подчинении не одна, а несколько таблиц. Однако подчиненная таблица не может управляться двумя таблицами. Таким образом, у главной таблицы может быть несколько подчиненных, но у подчиненной таблицы может быть только одна главная.

Различают четыре типа связей между таблицами реляционной базы данных:

· один к одному - каждой записи одной таблицы соответствует только одна запись другой таблицы;

· один ко многим - одной записи главной таблицы могут соответствовать несколько записей подчиненной таблицы;

· многие к одному - нескольким записям главной таблицы может соответствовать одна и та же запись подчиненной таблицы;

· многие ко многим - одна запись главной таблицы связана с несколькими записями подчиненной таблицы, а одна запись подчиненной таблицы связана с не сколькими записями главной таблицы.

Различие между типами связей «один ко многим» и «многие к одному» зависит от того, какая из таблиц выбирается в качестве главной, а какая в качестве подчиненной.

Основные свойства отношений

Рассмотрим теперь некоторые важнейшие свойства отношений реляционной мо дели данных.

3 Общие представления о модели данных

Можно по-разному характеризовать понятие модели данных. С одной стороны, модель данных – это способ структурирования данных, которые рассматриваются как некоторая абстракция в отрыве от предметной области. С другой стороны, модель данных – это инструмент представления концептуальной модели предметной области и динамики ее изменения в виде базы данных.

Учитывая обе вышеуказанные стороны, определим основные структуры моделей данных, используемые для представления концептуальной модели предметной области (сущностей, атрибутов, связей).

Элемент данных (поле) – наименьшая поименованная единица данных. Используется для представления значения атрибута.

Запись – поименованная совокупность полей. Используется для представления совокупности атрибутов сущности (записи о сущности).

Экземпляр записи – запись с конкретными значениями полей.

Агрегат данных – поименованная совокупность элементов данных внутри записи, которую можно рассматривать как единое целое.

Файл – поименованная совокупность экземпляров записей одного типа. Используется для представления однородного набора сущностей.

Набор файлов – поименованная совокупность файлов, обрабатываемых в системе. Используется для представления нескольких наборов сущностей.

Введем понятие «группа», обобщающее понятия «агрегат» и «запись».

Группа – это поименованная совокупность элементов данных или элементов данных и других групп.

Важнейшим понятием концептуальной модели является понятие связи между сущностями (наборами сущностей). В моделях данных соответствующее понятие отражается понятием «групповое отношение».

Групповое отношение – поименованное бинарное отношение, заданное на двух множествах экземпляров рассматриваемых групп. По характеру бинарных связей различают групповые отношения вида 1:1, 1:M, M:1, M:N. Пары чисел называют коэффициентами группового отношения. В групповом отношении один член группы назначается владельцем отношения, другой – членом.

База данных – поименованная совокупность экземпляров групп и групповых отношений.

Для представления группового отношения используется две формы:

а) Графовая . Группы изображаются вершинами графа, связи между группами – дугами, направленными от группы-владельца к группе-члену с указанием имени отношения и коэффициента.

По типу графов различают:

􀂃 иерархическую модель (граф без циклов – дерево);

􀂃 сетевую модель (ориентированный граф общего вида).

б) Табличная . Связь между группами изображается таблицей, столбцы которой представляют ключи соответствующих групп. Для формального описания таблицы используется математическое (теоретико-множественное) понятие отношения. Соответствующая модель данных называется реляционной моделью.

Модель данных описывается следующим образом:

􀂃 определяются типы и характеристики логических структур данных

(полей, записей, файлов);

􀂃 описываются правила составления структур более общего типа из структур более простых типов;

􀂃 описываются возможные действия над структурами и правила их

выполнения, включающие:

− основные элементарные операции над данными;

− обобщенные операции (процедуры);

− средства контроля относительно простых условий корректности ввода данных (ограничения);

− средства контроля сколь угодно сложных условий корректности выполнения определенных действий (правила). В качестве основных элементарных операций обычно рассматриваются следующие: поиск записи с заданным значением ключа, чтение нужной записи, добавление записи, корректировка, удаление. В моделях данных также предусматриваются специальные операции для установления групповых отношений.

Обобщенные операции или процедуры – последовательность операций, реализующая определенный алгоритм обработки данных. Процедуры могут инициироваться СУБД автоматически, а также могут запускаться пользователем. Примерами процедур являются процедуры копирования БД, восстановления БД, процедуры, вычисляющие значения определенных атрибутов в БД по значениям других атрибутов, и т.п.

Средства контроля используются для реализации ограничений целостности концептуальной модели. Простейшие средства контроля ограничения используются для реализации, как внешних ограничений концептуальной модели, так и внутренних ограничений модели данных. В качестве последних ограничений, в частности, реализованы ограничения на ввод данных несоответствующего типа, несоответствующей характеристики (по числу битов, по числу полей, по количеству записей и т.п.). Более сложные средства контроля (правила) позволяют вызывать выполнение определенной последовательности операций (сколь угодно сложной) при изменении или добавлении данных в БД и тем самым реализовывать ограничения целостности, описанные с помощью специальных конструкций.


Заключение

Когда в предыдущих разделах мы говорили об основных понятиях реляционных баз данных, мы не опирались на какую-либо конкретную реализацию. Эти рассуждения в равной степени относились к любой системе, при построении которой использовался реляционный подход. Другими словами, мы использовали понятия так называемой реляционной модели данных. Модель данных описывает некоторый набор родовых понятий и признаков, которыми должны обладать все конкретные СУБД и управляемые ими базы данных, если они основываются на этой модели. Наличие модели данных позволяет сравнивать конкретные реализации, используя один общий язык. Хотя понятие модели данных является общим, и можно говорить о иерархической, сетевой, некоторой семантической и т.д. моделях данных, нужно отметить, что это понятие было введено в обиход применительно к реляционным системам и наиболее эффективно используется именно в этом контексте. Попытки прямолинейного применения аналогичных моделей к дореляционным организациям показывают, что реляционная модель слишком "велика" для них, а для постреляционных организаций она оказывается "мала".


Список используемой литературы

1. Компьютеры в офисе и дома: Реляционные БД: 2004г. 228 стр.

2. Мичи Д., Джонатон Р. Реляционные СУБД. 2004г. №8, стр. 4

3. www.libbooks.ru (2006 по 2008г. Раздел: База данных).

4. www.bankreferatov.ru (2004 по 2008г. Раздел: База данных).

5. Джонс Э., Саттон Д. пользователя Office 97./ К.: Диалектика, 1999г.

6. Петров В.Н. Информационные системы: учебное пособие для студентов высших учебных заведений, 2003г. 2е изд. стр. 139