Инструментальное по. Инструментальные программы Инструментальное программное обеспечение название

НХИ-1, 20.02.12

Инструментальные системы программирования.

Транслятор, компилятор, интерпретатор

Трансляторы для компьютеров реализуются в виде компиляторов и интерпретаторов , которые существенно различаются.

Компилято р читает текст исходной программы целиком , транслирует ее и создает программу на машинном языке, которая затем целиком выполняется компьютером или заносится в отдельный файл.

Интерпретатортранслирует и выполняет операторы отдельными строками программы. Поэтому программа, обрабатываемая интерпретатором, переводится на машинный язык при каждом запуске программы.

Инструментальные системы программирования предоставляют пользователям средства разработки программ. В них входят:

· компилятор и/или интерпретатор;

· средства создания и редактирования текстов программ;

· библиотеки стандартных программ и функций;

· диалоговая среда для пользователя;

· графические библиотеки и утилиты для работы с библиотеками

· и другие средства.

К инструментальным системам программирования относятся Turbo Basic , Quick Basic , Turbo Pascal , Turbo C, Delphy, Builder .

Язык Бейсик создан как язык для начинающих.

Язык Паскаль разработан Никласом Виртом для обучения студентов программированию. Паскаль – это язык структурного программирования . Расширенный вариант языка – Turbo Pascal .

Язык Си соединяет свойства языка высокого уровня с возможностями использования программирования как на языке Ассемблера.

Современныесистемы программирования: Borland Delphi , Microsoft Visual Basic, Borland C++ , которые предназначены для создания программ в среде Windows и предоставляют удобные средства визуальной разработки.

К инструментальным программам относятся:

· редакторы;

· средства компоновки программ;

· отладочные программы;

· графические пакеты программ и т.п.

Инструментальные программные средства используются на всех стадиях разработки программного обеспечения.

Инструмента́льное програ́ммное обеспе́чение - программное обеспечение, предназначенное для использования в ходе проектирования, разработки и сопровождения программ, в отличие от прикладного и системного программного обеспечения.

Инструментальный уровень (трансляторы и компиляторы языков программирования, системы программирования), обеспечивают создание новых программ для персонального компьютера.

Язык программирования - формальная знаковая система, предназначенная для описания алгоритмов в форме, которая удобна для исполнителя (например, компьютера). Язык программирования определяет набор лексических, синтаксических и семантических правил, используемых при составлении компьютерной программы. Он позволяет программисту точно определить то, на какие события будет реагировать компьютер, как будут храниться и передаваться данные, а также какие именно действия следует выполнять над этими данными при различных обстоятельствах.

Языки программирования подразделяются на низкоуровневые и высокоуровневые языки.

Низкоуровневый язык программирования - язык программирования, близкий к программированию непосредственно в машинных кодах.

Как правило, использует особенности конкретного семейства процессоров. Общеизвестный пример низкоуровнего языка - язык ассемблера .

Высокоуровневый язык программирования - язык программирования, разработанный для быстроты и удобства использования программистом. Слово «высокоуровневый» здесь означает, что язык предназначен для решения абстрактных высокоуровневых задач и оперирует не инструкциями к оборудованию, а логическими понятиями и абстракцией данных. Это позволяет быстрее программировать сложные задачи и обеспечивает относительную независимость от оборудования. Использование разнообразных трансляторов и интерпретаторов обеспечивает связь программ, написанных при помощи языков высокого уровня, с различными операционными системами и оборудованием, в то время как их исходный код остаётся, в большей части, неизменным.

Такого рода оторванность высокоуровневых языков от аппаратной реализации компьютера помимо множества плюсов имеет и минусы. В частности, она не позволяет создавать простые и точные инструкции к используемому оборудованию. Программы написанные на языках высокого уровня, проще для понимания программистом, но гораздо менее эффективны, чем их аналоги, создаваемые при помощи низкоуровневых языков. Одним из следствий этого стало добавление поддержки того или иного языка низкого уровня (язык ассемблера) в большинство современных профессиональных высокоуровневых языков программирования.

Наиболее распространёнными языками подобного типа являются C++ , Visual Basic , Java , Python , Ruby , Perl , Delphi , PHP .


Языки программирования также можно разделить на компилируемые и интерпретируемые .

Программа на компилируемом языке при помощи специальной программы компилятора преобразуется (компилируется) в набор инструкций для данного типа процессора (машинный код) и далее записывается в исполняемый файл, который может быть запущен на выполнение как отдельная программа. Другими словами, компилятор переводит программу с языка высокого уровня на низкоуровневый язык, понятный процессору.

Если программа написана на интерпретируемом языке, то интерпретатор непосредственно выполняет (интерпретирует) её текст без предварительного перевода. При этом программа остаётся на исходном языке и не может быть запущена без интерпретатора. Можно сказать, что процессор компьютера - это интерпретатор машинного кода.

Кратко говоря, компилятор переводит программу на машинный язык сразу и целиком, создавая при этом отдельную программу, а интерпретатор переводит на машинный язык прямо во время исполнения программы.

Разделение на компилируемые и интерпретируемые языки является несколько условным. Так, для любого традиционно компилируемого языка, как, например, Паскаль , можно написать интерпретатор. Кроме того, большинство современных «чистых» интерпретаторов не исполняют конструкции языка непосредственно, а компилируют их в некоторое высокоуровневое промежуточное представление (например, с разыменованием переменных и раскрытием макросов).

Для любого интерпретируемого языка можно создать компилятор - например, язык Лисп , изначально интерпретируемый, может компилироваться без каких бы то ни было ограничений. Создаваемый во время исполнения программы код может так же динамически компилироваться во время исполнения.

Как правило, скомпилированные программы выполняются быстрее и не требуют для выполнения дополнительных программ, так как уже переведены на машинный язык. Вместе с тем при каждом изменении текста программы требуется ее перекомпиляция, что создает трудности при разработке. Кроме того, скомпилированная программа может выполняться только на том же типе компьютеров и, как правило, под той же операционной системой, на которую был рассчитан компилятор. Чтобы создать исполняемый файл для машины другого типа, требуется новая компиляция.

Интерпретируемые языки обладают некоторыми специфическими дополнительными возможностями, кроме того, программы на них можно запускать сразу же после изменения, что облегчает разработку. Программа на интерпретируемом языке может быть зачастую запущена на разных типах машин и операционных систем без дополнительных усилий. Однако интерпретируемые программы выполняются заметно медленнее, чем компилируемые, кроме того, они не могут выполняться без дополнительной программы-интерпретатора.

Некоторые языки, например, Java и C# , находятся между компилируемыми и интерпретируемыми. А именно, программа компилируется не в машинный язык, а в машинно-независимый код низкого уровня, байт-код . Далее байт-код выполняется виртуальной машиной. Для выполнения байт-кода обычно используется интерпретация, хотя отдельные его части для ускорения работы программы могут быть транслированы в машинный код непосредственно во время выполнения программы по технологии компиляции «на лету» (Just-in-time compilation ). Для Java байт-код исполняется виртуальной машиной Java (Java Virtual Machine ), для C# - Common Language Runtime .

Классы языков программирования. Условно, языки программирования можно разделить на следующие классы (рис. 2.).

В языках функционального программирования основными конструктивными элементами являются функции. Тексты программ на функциональных языках программирования описывают «как решить задачу», но не предписывают последовательность действий для решения.

В качестве основных свойств функциональных языков программирования обычно рассматриваются следующие:

· краткость и простота;

· строгая типизация;

· модульность;

· функции - объекты вычисления;

· чистота (отсутствие побочных эффектов);

· отложенные (ленивые) вычисления.


Рис. 2. Классы языков программирования

Примеры языков функционального программирования: Лисп, Haskell, Clean, ML и др.

Процедурное программирование - это парадигма программирования, основанная на концепции вызова процедуры . Процедуры, также известны как подпрограммы, методы, или функции (это не математические функции, но функции, подобные тем, которые используются в функциональном программировании). Процедуры просто содержат последовательность шагов для выполнения. В ходе выполнения программы любая процедура может быть вызвана из любой точки, включая саму данную процедуру.

Примеры процедурных языков программирования: Ада, Бейсик, Си, Си++, Паскаль, Visual Basic, Dilphi и др.

Язык описания интерфейсов или IDL (англ. Interface Description Language ) - чисто описательный компьютерный язык, синтаксически похожий на C++.

Примеры языков описания интерфейсов: CORBA IDL (разработан OMG для описания интерфейсов распределённых объектов - названий методов и типов переменных-аргументов), COM IDL (аналогичная CORBA IDL разработка Microsoft, созданная для описания интерфейсов между модулями COM).

Объектно-ориентированный язык программирования (ОО язык) - язык, благоприятствующий объектно-ориентированному программированию. В современных ОО языках используются методы:

Наследование . Создание нового класса объектов путём добавления новых элементов (методов). В данный момент ОО языки позволяют выполнять множественное наследование, т.е. объединять в одном классе возможности нескольких других классов.

Инкапсуляция . Сокрытие данных, которое (при грамотной реализации) позволяет вносить изменения в части программы безболезненно для других её частей. Что существенно упрощает сопровождение и модернизацию программного обеспечения.

Полиморфизм . При наследовании некоторые части (методы) родительского класса заменяются новыми, реализующими специфические для данного потомка действия. Таким образом, интерфейс классов остаётся прежним, а реализация методов с одинаковым названием и набором параметров различается.

Типизация . Позволяет устранить многие ошибки на момент компиляции, операции проводятся только над объектами подходящего типа.

Примеры ОО-языков программирования: Си++, Delphi (Object Pascal), С#, Java и др.

Логическое программирование - парадигма программирования, а также раздел дискретной математики изучающий методы и возможности этой парадигмы, основанная на выводе новых фактов из данных фактов согласно заданным логическим правилам. Логическое программирование основано на теории математической логики. Самым известным языком логического программирования является Пролог , являющийся по своей сути универсальной машиной вывода, работающей в предположении замкнутости мира фактов.

Скриптовый язык (англ. scripting language , также называют язык сценариев ) - язык программирования, разработанный для записи «сценариев», последовательностей операций, которые пользователь может выполнять на компьютере. Простые скриптовые языки раньше часто называли языками пакетной обработки (batch languages ). Сценарии всегда интерпретируются, а не компилируются.

В прикладной программе, сценарий (скрипт ) - это программа, которая автоматизирует некоторую задачу, которую без сценария пользователь делал бы вручную, используя интерфейс программы.

Примеры скриптовых языков программирования: VBA (Visual Basic Application), AutoLISP, 3DMAX Script, JCL, JavaScript и др.

В настоящее время, широкое использование компьютерных систем с кластерными и GRID-архитектурами поставило задачу создания высокоуровневых, мощных и лёгких для использования языков программирования, которые бы позволили создавать сложные, но в то же время быстрые приложения, эффективно использующие параллельные вычисления . Одним из таких языков в настоящее время является MC# (высокоуровневый объектно-ориентированный язык программирования для платформы.NET, поддерживающий создание программ, работающих в распределённой среде с асинхронными вызовами).

Вопросы для самопроверки:

1. Программное обеспечение.

2. Базовый уровень.

3. Системный уровень программного обеспечения.

4. Служебный уровень программного обеспечения.

5. Прикладной уровень программного обеспечения.

6. Что называется драйверами устройств?

7. Что называется утилитами?

8. Дайте определение языка программирования.

9. Что такое интерпретатор?

10. Что такое компилятор?

11. Приведите примеры языков программирования низкого и высокого уровней, в чём их отличие?

12. Какие классы языков программирования можно выделить? Приведите примеры для каждого класса.

13. Назовите основные свойства функциональных языков программирования

14. Назовите какие методы используются в современных объектно-ориентированных языках программирования.

15. Что такое сценарий (скрипт)?

К инструментальному программному обеспечению относятся средства разработки программного обеспечения. Это системы программирования, включающие программные средства, необходимые для автоматического построения машинного кода. Они являются инструментами для программистов- профессионалов и позволяют разрабатывать программы на различных языках программирования.

В состав средств разработки программного обеспечения входят следующие программы:

  • ассемблеры – компьютерные программы, осуществляющие преобразование программы в форме исходного текста на языке ассемблера в машинные команды в виде объектного кода;
  • трансляторы – программы, выполняющие трансляцию программы;
  • компиляторы – программы, переводящие текст программы на языке высокого уровня в эквивалентную программу на машинном языке;
  • интерпретаторы – программы, анализирующие команды или операторы программы и тут же выполняющие их;
  • компоновщики (редакторы связей) – программы, которые производят компоновку – принимают на вход один или несколько объектных модулей и собирают по ним исполнимый модуль;
  • препроцессоры исходных текстов – это компьютерные программы, принимающие данные на входе, и выдающие данные, предназначенные для входа другой программы, например такой, как компилятор;
  • отладчики (debugger) – программы, являющиеся модулем среды разработки или отдельным приложением, предназначенным для поиска ошибок в программе;
  • специализированные редакторы исходных текстов – программы, необходимые для создания и редактирования исходного кода программ. Специализированный редактор исходных текстов может быть отдельным приложением или встроенным в интегрированную среду разработки и др.

Языки, представляющие алгоритмы в виде последовательности читаемых (не двоично-кодированных) команд, называются алгоритмическими языками. Алгоритмические языки подразделяются на машинно-ориентированные, процедурно-ориентированные и проблемно-ориентированные.

Машинно-ориентированные языки относятся к языкам программирования низкого уровня – программирование на них наиболее трудоемко, но позволяет создавать оптимальные программы, максимально учитывающие функционально-структурные особенности конкретного компьютера. Программы на этих языках, при прочих равных условиях, будут более короткими и быстрыми. Кроме того, знание основ программирования на машинно-ориентированном языке позволяет специалисту подробнейшим образом разобраться с архитектурой компьютера. Большинство команд машинно-ориентированных языков при трансляции (переводе) на машинный (двоичный) язык генерируют одну машинную команду.

Процедурно-ориентированные и проблемно-ориентированные языки относятся к языкам высокого уровня, использующим макрокоманды. Макрокоманда при трансляции генерирует много машинных команд (для процедурноориентированного языка это соотношение в среднем "1 к десяткам машинных команд", а для проблемно-ориентированного – "1 к сотням машинных команд". Процедурноориентированные языки программирования являются самыми используемыми (Basic, Visual Basic, Pascal, Borland Delphi, С и др.). В этом случае программист должен описывать всю процедуру решения задачи, тогда как проблемно-ориентированные языки (их называют также непроцедурными) позволяют лишь формально идентифицировать проблему и указать состав, структуры представления и форматы входной и выходной информации для задачи.

При выполнении инструкций программ компьютеру необходимо преобразовать удобные для человеческого восприятия операторы, написанные на каком-либо языке программирования, в форму, попятную для компьютера. Инструментальное программное обеспечение имеет специальные программы, транслирующие (translate) текст программ, написанных на различных языках программирования, в машинные коды, которые затем выполняются компьютером. Этот вид программного обеспечения называется компилятором или интерпретатором. Текст программы, написанной на языке программирования высокого уровня, до того как быть преобразованным в машинные коды, называется исходным кодом (source code). Компилятор (compiler) преобразует исходный код в машинные коды, называемые объектным кодом (object code) – программой на выходном языке транслятора. Перед выполнением происходит процесс редактирования связей (linkage editing), заключающийся в том, что модули выходной программы объединяются с другими модулями объектного кода, содержащими, например, данные. Результирующий загрузочный модуль – это команды, непосредственно выполняемые компьютером. Некоторые языки программирования содержат не компилятор, а интерпретатор (interpreter), который преобразует каждое отдельное выражение исходного кода в машинные коды и сразу выполняет их. Интерпретатор удобен на этапе отладки программы, так как обеспечивает быструю обратную связь при обнаружении ошибки в исходном коде. Основы программирования на языке высокого уровня Visual Basic изложены в гл. 12 настоящего учебника.

К инструментальному ПО относят также некоторые системы управления базами данных (СУБД). СУБД – это специализированный комплекс программ, предназначенный для организации и ведения баз данных. Так как системы управления базами данных не являются обязательным компонентом вычислительной системы, их не относят к системному программному обеспечению. А так как отдельные СУБД осуществляют лишь служебную функцию при работе других видов программ (веб-серверы, серверы приложений), их не всегда можно отнести к прикладному программному обеспечению. По этим причинам их часто относят к инструментальному программному обеспечению.

Основные функции таких СУБД:

  • управление данными во внешней памяти (на дисках);
  • управление данными в оперативной памяти с использованием дискового кэша;
  • фиксация изменений в специальных журналах, резервное копирование и восстановление базы данных после сбоев;
  • поддержка языков БД (язык определения данных, язык манипулирования данными).

Теоретические основы СУБД описаны выше (параграф 3.2), а практическое применение описано в гл. 10.

Инструментальное ПО предназначено для использования в ходе проектирования, разработки и сопровождения компьютерных программ. К инструментальному ПО можно отнести следующие виды программ:

Компиляторы

Трансляторы

Ассемблеры

Интерпретаторы

Компоновщики

Отладчики

Средства автоматизированного тестирования программ

Генераторы документации

Комплект средств разработки (SDK)

Системы управления версиями

Системы программирования и интегрированные среды разработки программ

Системы автоматизации программирования (CASE)

Компилятор – это программное средство для перевода программ, написанных на каком-либо языке программирования, в программы, представленные в двоичных машинных кодах. Компиляторы делятся на три вида – трансляторы, ассемблеры и интерпретаторы.

Транслятор –это компилятор, который полностью переводит программы на каком-либо языке программирования в машинные коды или в так называемый объектный код. Полученная программа в машинных кодах может быть позже преобразована в исполнимый модуль, загружена в оперативную память и запущена на выполнение процессором. Разновидностью транслятора считается ассемблер – программа, которая переводит текст программы, написанный на машинно-ориентированном языке («мнемокоде» или «языке ассемблера») в двоичный код. Понятие ассемблера зачастую связывается непосредственно с машинно-ориентированным языком. Поэтому этот термин иногда используется в значении – язык программирования машинного уровня.

Интерпретатор – это компилятор, который построчно (или по одной команде) переводит исходную программу на языке программирования в двоичные коды и тут же передает этот двоичный код процессору на выполнение.

Компоновщик – программа, которая производит компоновку исполняемого или загрузочного кода – принимает на вход один или несколько объектных модулей и собирает по ним один исполнимый модуль, который может быть загружен в память и запущен на выполнение процессором.

Отладчик – как правило, является частью среды разработки программного обеспечения или отдельным приложением, предназначенным для поиска ошибок в программе. Отладчик позволяет выполнять пошаговую трассировку программы, отслеживать, устанавливать или изменять значения переменных в процессе выполнения программы, устанавливать и удалять контрольные точки или условия остановки и т. д.

Средства автоматизированного тестирования программ – программные модули, позволяющие создавать автоматизированные тесты с минимальным участием человека и в автоматизированном режиме выдавать на вход тестовые последовательности, отслеживать реакцию работы тестируемой программы. Как правило, такие средства тестируют программы на быстродействие, надежность при больших потоках данных, – это так называемое «нагрузочное тестирование». Например, проверка программ при большом сетевом трафике и т.п. Но существуют средства по проверке функциональных возможностей, например инструменты, предназначенные для проверки соответствия приложения предъявляемым бизнес-требованиям.

Генератор документации – программа или пакет программ, позволяющая получать документацию, предназначенную для программистов (документация на API) и/или для конечных пользователей системы, по особым образом комментированному исходному коду и, в некоторых случаях, по исполняемым модулям (полученным на выходе компилятора). Обычно, генератор анализирует исходный код программы, выделяя синтаксические конструкции, соответствующие значимым объектам программы (типам, классам и их членам/свойствам/методам, процедурам/функциям и т. п.). В ходе анализа также используется метаинформация об объектах программы, представленная в виде документирующих комментариев . На основе всей собранной информации формируется готовая документация, как правило, в одном из общепринятых форматов – HTML, HTMLHelp, PDF, RTF и других.

Комплект средств разработки (SDK, Software Development Kit ) или «devkit» – набор программ и библиотек подпрограмм, позволяющий специалистам по программному обеспечению создавать приложения для определённого пакета программ, программного обеспечения базовых средств разработки, аппаратной платформы, компьютерной системы, видеоигровых консолей, операционных систем и прочих платформ. Программист, как правило, получает SDK непосредственно от разработчика целевой технологии или системы. Часто SDK распространяется через Интернет. Многие SDK распространяются бесплатно для того, чтобы поощрить разработчиков использовать данную технологию или платформу.

Система управления версиями (Version Control System, VCS или Revision Control System ) - программное обеспечение для облегчения работы с изменяющейся информацией. Система управления версиями позволяет хранить несколько версий одного и того же документа, при необходимости, возвращаться к более ранним версиям, определять, кто и когда сделал то или иное изменение и многое другое. Такие системы наиболее широко применяются при разработке программного обеспечения, для хранения исходных кодов разрабатываемой программы. Однако, они могут с успехом применяться и в других областях, в которых ведётся работа с большим количеством непрерывно изменяющихся электронных документов.

Интегрированная среда разработки (ИСР) (Integrated development environment, IDE ) – система программных средств, используемая для разработки программного обеспечения. Обычно среда разработки включает в себя текстовый редактор, компилятор и/или интерпретатор, средства автоматизации сборки и отладчик. Иногда также содержит средства для интеграции с системами управления версиями и разнообразные инструменты для упрощения конструирования графического интерфейса пользователя. Многие современные среды разработки также включают браузер классов , инспектор объектов и диаграмму иерархии классов - для использования при объектно-ориентированной разработке ПО. Хотя и существуют среды разработки, предназначенные для нескольких языков - такие как Eclipse, NetBeans, Embarcadero RAD Studio или Microsoft Visual Studio, обычно среда разработки предназначается для одного определённого языка программирования - как например, Visual Basic, Delphi, Dev-C++. Частный случай ИСР - среды визуальной разработки, которые включают в себя возможность визуального редактирования интерфейса программы. Иногда ИСР называют «система программирования» , хотя в большинстве случаях ИСР охватывает расширенный спектр функций и возможностей.

Системы автоматизации программирования (Computer-Aided System Engineering , CASE ) – программный комплекс, автоматизирующий весь технологический процесс анализа, проектирования, разработки, кодирования, отладки и сопровождения сложных программных систем. Основное достоинство CASE-технологии – это поддержка коллективной работы над проектом за счет возможности работы в локальной и глобальной сети разработчиков, экспорта(импорта) любых фрагментов проекта, организованного управления программами. Как правило, CASE-системы поддерживают автоматическую кодогенерацию программ – создание каркаса программой системы и создание полного продукта с системной документацией.

Прикладное программное обеспечение

К этой категории относятся программы, программные комплексы и программные системы с помощью которых решаются конкретные пользовательские задачи в производственных, творческих, развлекательных, учебных или каких-либо других целях. Прикладное ПО делится на следующие виды:

Проблемно-ориентированные программы

Системы автоматизированного проектирования(САПР)

ПО для автоматизированных систем управления

Программы общего назначения

Офисные системы

Интеллектуальные системы

Программные системы мультимедиа

Настольные издательские системы

Проблемно-ориентированные программы предназначены для решения прикладных задач, связанных с производственной деятельностью человека, например:

Программы бухгалтерского учета;

Программы финансовой деятельности;

Программы управления персоналом;

Программы управления предприятием;

Банковские информационные и автоматизированные системы;

Автоматизированные рабочие места на предприятии;

Системы автоматизированного проектирования (CAD System - Computer Aided Design System ) предназначены для поддержки работы конструкторов, технологов, электриков и электронщиков, архитекторов и других специалистов, связанных с разработкой чертежей, схем, моделей, графическим моделированием, конструированием. Системы такого класса очень требовательны к аппаратному обеспечению ЭВМ, быстродействию, памяти. Существенно наличие библиотек встроенных функций, объектов, интерфейсов с графическими системами и базами данных.

В САПР принято выделять семь видов обеспечения:

Техническое (ТО), включающее различные аппаратные средства (ЭВМ, периферийные устройства, сетевое коммутационное оборудование, линии связи, измерительные средства);

Математическое (МО), объединяющее математические методы, модели и алгоритмы для выполнения проектирования;

Программное (ПО), представляемое компьютерными программами САПР;

Информационное (ИО), состоящее из баз данных (БД), систем управления базами данных (СУБД), а также других данных, используемых при проектировании. Вся совокупность используемых при проектировании данных называется информационным фондом САПР, а БД вместе с СУБД носит название банка данных (БнД);

Лингвистическое (ЛО), выражаемое языками общения между проектировщиками и ЭВМ, языками программирования и языками обмена данными между техническими средствами САПР;

Методическое (МетО), включающее различные методики проектирования, иногда к МетО относят также математическое обеспечение;

Организационное (ОО), представляемое штатными расписаниями, должностными инструкциями и другими документами, регламентирующими работу проектного предприятия.

По области применения можно выделить следующие группы САПР:

САПР для применения в отраслях общего машиностроения. Их часто называют машиностроительными САПР или MCAD (Mechanical CAD) системами;

САПР для радиоэлектроники. Их названия - ECAD (Electronic CAD) или EDA (Electronic Design Automation) системы.

САПР в области архитектуры и строительства.

Кроме того, известно большое число более специализированных САПР, или выделяемых в указанных группах, или представляющих самостоятельную ветвь в классификации. Примерами таких систем являются САПР больших интегральных схем (БИС); САПР летательных аппаратов; САПР электрических машин и т.п.

Поцелевому назначению различают САПР или подсистемы САПР, обеспечивающие разные аспекты проектирования. Так, в составе MCAD появляются CAE/CAD/CAM системы:

САПР функционального проектирования, иначе САПР-Ф или CAE (Computer Aided Engineering) системы.

Конструкторские САПР общего машиностроения - САПР-К, часто называемые просто CAD системами;

Технологические САПР общего машиностроения - САПР-Т, иначе называемые автоматизированными системами технологической подготовки производства АСТПП или системами CAМ (Computer Aided Manufacturing).

Автоматизированная система управления(АСУ) - комплекс аппаратных и программных средств, предназначенный для управления различными процессами в рамках технологического процесса, производства, предприятия. АСУ применяются в различных отраслях промышленности, энергетике, транспорте и т. п. Термин автоматизированная, в отличие от термина автоматическая подчеркивает сохранение за человеком-оператором некоторых функций, связанных с заданием цели, принятием решения, либо с выполнением некоторых функций, не поддающихся автоматизации.

Наиболее всего известны следующие классы АСУ:

Автоматизированная система управления технологическим процессом (АСУ ТП) - решает задачи оперативного управления и контроля техническими объектами в промышленности, энергетике, на транспорте;

Автоматизированная система технической(технологической) подготовкой производства (АСТПП) – система связанная с организацией технических процессов, которые существуют или только появляются на производстве, основанные на программировании станков с числовым программным управлением, изготовлением и сборкой программно-управляемых роботов и т.п.

Автоматизированная система управления производством (АСУ П) – решает задачи организации производства, включая основные производственные процессы, входящую и исходящую логистику. Осуществляет краткосрочное планирование выпуска с учётом производственных мощностей, анализ качества продукции, моделирование производственного процесса. Для решения этих задач применяются MIS и MES-системы, а также LIMS-системы.

Автоматизированная система управления предприятием (АСУП) - для решения этих задач применяются MRP,MRP II и ERP-системы. Например, если предприятием является высшее учебное заведение, имеет место АСУ ВУЗ.

В качестве примера наиболее известных АСУ можно выделить:

Автоматизированная система управления дорожным движением или АСУД - предназначена для управления транспортных средств и пешеходных потоков на дорожной сети города или автомагистрали;

Автоматизированная система управления уличным освещением («АСУ УО») - предназначена для организации автоматизации централизованного управления уличным освещением;

«Автоматизированная система управления» для гостиниц;

Автоматизированная система контроля проезда (АСКП) в общественном транспорте г.Москвы и др.

В последнее время повсеместно используются и внедряются автоматизированные системы обработки информации и управления (АСОИУ) – это широкий класс автоматизированных систем управления, связанных с автоматизацией в области обработки, хранения и передачи информации. АСОИУ в отличие от АСУ могут применяться практически повсеместно, в виде информационных систем, систем управления, систем автоматизации практически любой сферы деятельности человека. Современные АСОИУ базируются на использовании вычислительных сетей, ориентированы на обработку графической, видео- и звуковой информации, используют технологии мультимедиа, элементы систем искусственного интеллекта. Без такого рода программного обеспечения в настоящее время трудно себе представить современное предприятие, независимо от размера и направления деятельности. Этим объясняется стремительный рост использования АСОИУ во всех отраслях экономики.

К группе программ общего назначения можно отнести:

Системы управления базами данных (СУБД)

Серверы БД

Генераторы отчетов

Текстовые процессоры

Табличные процессоры

Средства презентационной графики

Интегрированные пакеты

Методо-ориентированные программы

Системы управления базами данных (СУБД) – обеспечивают организацию и хранение локальных БД на автономно работающих компьютерах либо централизованное хранение БД на файл-сервере и сетевой доступ к ним. В современных СУБД содержатся элементы CASE-технологии процесса проектирования, в частности:

Визуализация схем баз данных;

Автоматическая поддержка целостности БД при различных видах обработки (включение, удаление, модификация);

Наличие так называемых мастеров, обеспечивающих поддержку процесса проектирования;

Шаблоны и прототипы структур БД, отчетов форм и т.д.

Серверы БД – это ПО, предназначенное для создания и использования при работе в сети интегрированных БД в архитектуре клиент-сервер.

Многопользовательские СУБД в сетевом варианте обработки информации хранят данные на файл-сервере, специально выделенном компьютере, но сама обработки ведется на рабочих станциях.

Общим для различных видов БД является использование реляционного языка SQL (Structured Query Language) для реализации запросов к данным.

Генераторы отчетов (серверы отчетов) обеспечивают реализацию запросов и формирование отчетов в печатном или экранном виде в условиях сети с архитектурой клиент-сервер. Сервер отчетов подключается к серверу БД, используя драйверы сервиса БД (Crystal Reports, Profit for windows).

Текстовые процессоры предназначены для работы с текстовыми документами. Развитием данного направления являются издательские системы Microsoft Word).

Табличные процессоры являются удобной средой для вычислений, которая содержит средства деловой графики, средства специализированной обработки (Microsoft Excel).

Средства презентационной графики – это специализированные программы, предназначенные для создания изображений и их показ на экране, подготовка слайд-фильмов, мультфильмов и их проектирования (Microsoft PowerPoint, Flash).

Интегрированные пакеты – это набор нескольких программных продуктов, функционально дополняющих друг друга, поддерживающих единые информационные технологии, реализованные на единой операционной вычислительной платформе (Microsoft Office).

Компоненты интегрированных пакетов могут работать изолированно друг от друга, имеют общий интерфейс, благодаря чему их лучше осваивать.

Методо-ориентированные ППП обеспечивают, независимо от предметной области и функции информационных систем, математические, статистические и другие методы решения задач. Наиболее распространены методы математического программирования, решения дифференциальных уравнений, имитационного моделирования, исследования операций (Storm, SYSTAT, SAS и др.)

Офисные ППП обеспечивают организационное управление деятельностью офиса.

В разряд офисных ППП входят:

Органайзеры (планировщики) – ПО для планирования рабочего времени, составления протоколов встреч, расписаний, ведения записей и телефонной книжки (калькулятор, записная книжка, часы, календарь и т.п.)

Программы-переводчики, средства проверки орфографии, распознавание текста (Tiger – система распознавания русского языка, Stylus Lingvo Office, содержащий Fine Reader, Stylus for Windows – переводчик на указанный язык, корректор орфографии Lingvo Corrector и резидентный словарь Lingvo)

Коммуникационные пакеты, предназначенные для организации взаимодействия пользователей с удаленными абонентами или информационными ресурсами сети (ICQ и др.)

Браузеры, средства создания WWW-страниц

Средства электронной почты (Pegasys Mail)

Настольные издательские системы – это широкий класс ПО, который реализует основные компоненты издательской деятельности.

Данный класс ПО включает программы, обеспечивающие:

Форматирование и редактирование текстов

Автоматическую разбивку текста на страницы

Компьютерную верстку печатной страницы

Монтирование графики

Подготовку иллюстраций

Подготовку оригинал-макета

К настольным издательским системам относятся:

PhotoShop for Windows

Программные средства мультимедиа . Основное значение данных программных средств – создание и использование аудио- и видеоинформации для расширения информационного пространства пользователя (различные БД компьютерных произведений искусства, видеотеки, медиатеки, библиотеки звуковых записей и т.д.)

Системы искусственного интеллекта:

Программы-оболочки для создания экспертных систем путем наполнения баз знаний и правил логического вывода

Готовые экспертные системы для принятия решений в рамках определенных предметных областей

Системы анализа и распознавания речи, текста и т.п.

Под интеллектуальными системами (ИС) можно понимать автоматические и автоматизированные системы с элементами искусственного интеллекта (ИИ).

Основными направлениями ИИ являются:

Представление знаний и разработка систем, основанных на знаниях

Творчество и игры (шахматы, шашки, го)

Разработка естественно-языковых интерфейсов и машинный перевод текстов

Распознавание образов (каждому объекту ставится в соответствие матрица признаков, по которой проходит его распознание)

Новые архитектуры компонентов (нейрокомпьютеры)

Интеллектуальные роботы

Специальное ПО (языки Лисп, Пролог)

Обучение и самообучение (включают модели, методы и алгоритмы, ориентированные на автоматическое накопление знаний на основе анализа и обобщения данных)

Знания – это выявление закономерности предметной области (принципы, связи, законы), позволяющие решать задачи в этой области. Знания – это данные о данных, или метаданные.

Модели представления знаний:

Продукционные модели

Семантические модели

Фреймовые модели

Формальные логические модели

Инструментальные программные средства - это программы, которые используются в ходе разработки, корректировки или развития других прикладных или системных программ.

Инструментальные программные средства могут оказать помощь на всех стадиях разработки ПО. По своему назначению они близки системам программирования.

К инструментальным программам, например, относятся:

  • - редакторы;
  • - средства компоновки программ;
  • - вспомогательные программы, реализующие часто используемые системные действия;
  • - графические пакеты программ и т. п.

СИСТЕМА ПРОГРАММИРОВАНИЯ

Это система для разработки новых программ на конкретном языке программирования. Современные системы программирования обычно предоставляют пользователям мощные и удобные средства разработки программ. В них входят:

  • - компилятор или интерпретатор;
  • - интегрированная среда разработки;
  • - средства создания и редактирования текстов программ;
  • - обширные библиотеки стандартных программ и функций;
  • - отладочные программы, т. е., программы, помогающие находить и устранять ошибки в программе;
  • - "дружественная" к пользователю диалоговая среда;
  • - многооконный режим работы;
  • - мощные графические библиотеки;
  • - утилиты для работы с библиотеками
  • - встроенный ассемблер;
  • - встроенная справочная служба;
  • - другие специфические особенности.

Транслятор - это программа-переводчик. Она преобразует программу, написанную на одном из языков высокого уровня, в программу, состоящую из машинных команд. Трансляторы реализуются в виде компиляторов или интерпретаторов. С точки зрения выполнения работы компилятор и интерпретатор существенно различаются.

Компилятор - читает всю программу целиком, делает ее перевод и создает законченный вариант программы на машинном языке, который затем и выполняется.

Интерпретатор - переводит и выполняет программу строка за строкой. После того, как программа откомпилирована, ни сама исходная программа, ни компилятор более не нужны. В то же время программа, обрабатываемая интерпретатором, должна заново переводиться на машинный язык при каждом очередном запуске программы. Популярные системы программирования - Turbo Basic, Quick Basic, Turbo Pascal, Turbo C. Borland C++, Borland Delphi. Каждый конкретный язык ориентирован либо на компиляцию, либо на интерпретацию - в зависимости от того, для каких целей он создавался. Например, Pascal обычно используется для решения довольно сложных задач, в которых важна скорость работы программ. Поэтому данный язык обычно реализуется с помощью компилятора. С другой стороны, Basic создавался как язык для начинающих программистов, для которых построчное выполнение программы имеет неоспоримые преимущества. компьютер интерактивный приложение

Иногда для одного языка имеется и компилятор, и интерпретатор. В этом случае для разработки и тестирования программы можно воспользоваться интерпретатором, а затем откомпилировать отлаженную программу, чтобы повысить скорость ее выполнения.