6x9 импеданс 1.9 ом номинальная мощность 36w. Акустическая система

Сам столкнулся с этой темой давно, но разобраться решил, когда начал серьёзно заниматься акустическими измерениями. Немного покапал в инете, немного пообщался с друзьями и в конце концов нарисовалась данная статья, которая надеюсь поможет в нашем непростом деле.

Импеданс – это комплексное (полное) сопротивление двухполюсника для гармонического сигнала, которое имеет активную и реактивную составляющие. Обычно импеданс акустических систем равен 4, 6 или 8 Ом. Импедансом так же называется отношение комплексной амплитуды напряжения гармонического сигнала, прикладываемого к двухполюснику, к комплексной амплитуде тока, протекающего через двухполюсник.

Пример импеданса акустической системы:

В отличие от резистора, электрическое сопротивление которого характеризует соотношение напряжения к току на нём, попытка применения термина электрическое сопротивление к реактивным элементам (катушка индуктивности и конденсатор) приводит к тому, что сопротивление идеальной катушки индуктивности стремится к нулю, а сопротивление идеального конденсатора - к бесконечности.

Сопротивление правильно описывает свойства катушки и конденсатора только на постоянном токе. В случае же переменного тока свойства реактивных элементов существенно иные: напряжение на катушке индуктивности и ток через конденсатор не равны нулю. Такое поведение сопротивлением уже не описывается, поскольку сопротивление предполагает постоянное, не зависящее от времени соотношение тока и напряжения, то есть отсутствие фазовых сдвигов тока и напряжения.

Было бы удобно иметь некоторую характеристику и для реактивных элементов, которая бы при любых условиях связывала ток и напряжение на них подобно сопротивлению. Такую характеристику можно ввести, если рассмотреть свойства реактивных элементов при гармонических воздействиях на них. В этом случае ток и напряжение оказываются связаны некой стабильной константой (подобной в некотором смысле сопротивлению), которая и получила название электрический импеданс (или просто импеданс). При рассмотрении импеданса используется комплексное представление гармонических сигналов, поскольку именно оно позволяет одновременно учитывать и амплитудные, и фазовые характеристики сигналов и систем.

В целом величина полного электрического сопротивления (импеданса) акустической системы ни о чем, связанном с качеством звучания того или иного изделия, покупателю не скажет. Производителем указывается этот параметр лишь, чтобы сопротивление учитывали при подключении акустической системы к усилителю. Если значение сопротивления колонки ниже, чем рекомендуемое значение нагрузки усилителя, в звучании могут присутствовать искажения или сработает защита от короткого замыкания; если выше, то звук будет значительно тише, нежели с рекомендуемым сопротивлением.

Если представить акустическую систему, как четырёхполюсник к входным клеммам которого подключен генератор сигналов, то в зависимости от частоты подаваемого сигнала и состава вашего фильтра + излучатель, импеданс будет изменяться. Изменение носит нелинейный характер и может быть в одной области частот ёмкостным, а в другой – индуктивным. Чем сложнее выполнен фильтр в вашей акустической системе, тем больше изменений в импедансе.

Сопротивление акустической системы зависит от частоты. Но при использовании усилителя с обратной связью по току – ИТУН (источник тока управляемый напряжением) или полу-ИТУН (в народе широко известен такой усилитель, как например MF 1), такой показатель, как зависимость от частоты, сама собой отпадает . Потому что уже нет зависимости от сопротивления на разных частотах, а это значит что ток, проходящий через катушку, уже не так изменяется. Он и работает только от того, что ток не превышает определённых значений. Но добавлю, что ИТУН и MF1 (полу-ИТУН) это не одно и то же, так как в ИТУНе есть только обратная связь по току, а в MF1 – комбинированная связь по току и по напряжению. Поэтому MF1 можно назвать «полу-ИТУН», так как он сочетает в себе комбинированную обратную связь.

Хочу обратить внимание на то, что ИТУН имеет небольшой подъём на высоких частотах , а связано это как раз с тем, что ток который проходит через катушку ВЧ динамика уже не «проваливается» и динамик играет как бы ровнее. Точно такой же эффект (поднятие высоких частот) присутствует и в MF1 всё по той же причине, а вот на НЧ уже сказывается меньше, таким образом, MF 1 более универсален в плане АС и комплексной нагрузки, относительно чистого ИТУНа.

А в случае с ИНУН (источник напряжения управляемый напряжением), которые и являются подавляющее большинство усилителей, может в момент низкого сопротивления создать такой ток, который выведет из строя выходной каскад вследствие перегрузки по току. В другом случае, если сопротивление будет слишком высоким, то будет провал в этой части АЧХ, что вместе с пиком (который возникает от низкого сопротивления) дадут большие искажения , причем в несколько раз.

Еще раз памятка тем, кто хочет создать самодельные АС или что-то доработать. Как минимум, для получения удовлетворительного результата, нужно иметь под рукой комплекс для этих измерений и хотя бы немного знаний в электротехнике .

Вывод . При создании, доработке или переделки акустических систем, отдельное внимание нужно уделять импедансу . Измерять его можно с помощью компьютера, несложной коробочке-приставки и такой программы, например как L spL ab, ну или как при замере параметров ТС, но в этом случае нужно иметь калиброванный (20 – 20000 Гц) милливольтметр. А также для уверенности использовать усилитель с обратной связью по току – ИТУН или полу-ИТУН, которым является всеми любимый и известный MF1 от Linkor.

Особую благодарность хочу сделать DTS у, в помощи по написанию статьи и решению некоторых нюансов. Ну а так как обычно, статью подготовил LDS , которая специально написана для сайта сайт .

Мы продолжаем нашу традицию, и публикуем очередную статью из серии "методика тестирования". Подобные статьи служат как общетеоретическим базисом, помогающим читателям получить введение в тему, так и конкретным руководством по интерпретации результатов тестов, полученных в нашей лаборатории. Сегодняшняя статья по методике будет несколько необычной - мы решили посвятить значительную ее часть теории звука и акустических систем. Зачем это нужно? Дело в том, что звук и акустика - практически самая сложная из всех освещаемых нашим ресурсом тематик. И, пожалуй, среднестатистический читатель подкован в этой области меньше, чем, скажем, в оценке разгонного потенциала различных степпингов Core 2 Duo. Мы рассчитываем, что справочные материалы, которые легли в основу статьи, а также непосредственное описание методики измерения и тестирования позволят заполнить некоторые пробелы в знаниях всех любителей хорошего звука. Итак, начнем с основных терминов и понятий, которые обязан знать любой начинающий аудиофил.

Основные термины и понятия

Небольшое введение в музыку

Начнем оригинально: с начала. С того, что звучит через колонки, и о прочих наушниках. Так уж повелось, что среднестатистическое человечье ухо различает сигналы в диапазоне от 20 до 20 000 Гц (или 20 кГц). Этот довольно солидный диапазон в свою очередь делится обычно на 10 октав (можно поделить на любое другое количество, но принято именно 10).

В общем случае октава - это диапазон частот, границы которого вычисляются удвоением или ополовиниванием частоты. Нижняя граница последующей октавы получается удвоением нижней границы предыдущей октавы. Кто знаком с булевой алгеброй, то тому этот ряд покажется странно знакомым. Степени двойки с дописанным нулем в конце в чистом виде. Собственно, зачем нужно знание октав? Оно необходимо для того, чтобы прекратить путаницу в том, что надо называть нижним, средним или еще каким басом и тому подобное. Общепринятый набор октав однозначно определяет, кто есть кто с точностью до герца.

Номер октавы

Нижняя граница, Гц

Верхняя граница, Гц

Название

Название 2

Глубокий бас

Средний бас

Субконтр

Верхний бас

Нижняя середина

Собственно середина

Верхняя середина

Нижний верх

Средний верх

Верхние высокие

Верхняя октава

Последняя строка не нумерована. Это связано с тем, что в стандартную десятку октав она не входит. Обратите внимание на столбец "Название 2". Здесь содержатся названия октав, которые выделяются музыкантами. У этих "странных" людей нет понятия глубокого баса, зато есть одна октава сверху - от 20480 Гц. Поэтому такое расхождение в нумерации и названиях.

Теперь можно говорить более предметно о частотном диапазоне акустических систем. Следует начать с неприятной новости: глубокого баса в мультимедийной акустике нет. 20 Гц подавляющее большинство любителей музыки на уровне -3 дБ попросту никогда не слышало. А теперь новость приятная и неожиданная. В реальном сигнале таких частот тоже нет (за некоторым исключением, естественно). Исключением является, например, запись с судейского диска IASCA Competition. Песенка называется "The Viking". Там даже 10 Гц записаны с приличной амплитудой. Этот трек записывали в специальном помещении на огромном органе. Систему, которая отыграет "Викингов", судьи увешают наградами, как новогоднюю елку игрушками. А с реальным сигналом все проще: басовый барабан - от 40 Гц. Здоровенные китайские барабаны - тоже от 40 Гц (есть там среди них, правда, один мегабарабан. Так он аж от 30 Гц начинает играть). Живой контрабас - вообще от 60 Гц. Как можно заметить, 20 Гц здесь не упоминаются. Поэтому можно не расстраиваться по поводу отсутствия настолько низких составляющих. Они для прослушивания реальной музыки не нужны.

На рисунке представлена спектрограмма. На ней две кривые: фиолетовая DIN и зеленая (от старости) IEC. Эти кривые отображают распределение по спектру среднего музыкального сигнала. Характеристика IEC применялась до 60-х годов 20-го века. В те времена предпочитали не издеваться над пищалкой. А после 60-х эксперты обратили внимание на то, что предпочтения слушателей и музыка несколько поменялись. Это отразилось в стандарте великого и могучего DIN. Как видно, высоких частот стало гораздо больше. Но баса не прибавилось. Вывод: не нужно гоняться за супербасистыми системами. Тем более что желанных 20 Гц там все равно не положили в коробку.

Характеристики акустических систем

Теперь, зная азбуку октав и музыки, можно приступить к пониманию АЧХ. АЧХ (амплитудно-частотная характеристика) - зависимость амплитуды колебания на выходе устройства от частоты входного гармонического сигнала. То есть системе подают на вход сигнал, уровень которого принимается за 0 дБ. Из этого сигнала колонки с усилительным трактом делают, что могут. Получается у них обычно не прямая на 0 дБ, а некоторым образом изломанная линия. Самое интересное, кстати, заключается в том, что все (от аудиолюбителей до аудиопроизводителей) стремятся к идеально ровной АЧХ, но "пристремиться" боятся.

Собственно, в чем польза АЧХ и зачем авторы TECHLABS с завидным постоянством стараются замерить эту кривую? Дело в том, что по ней можно установить настоящие, а не нашептанные "злым маркетинговым духом" производителю границы частотного диапазона. Принято указывать, при каком падении сигнала граничные частоты все-таки проигрываются. Если не указано, то считается, что были взяты стандартные -3 дБ. Вот здесь и кроется подвох. Достаточно не указать, при каком падении были взяты значения границы, и можно абсолютно честно указывать хоть 20 Гц - 20 кГц, хотя, действительно, эти 20 Гц достижимы при уровне сигнала, который сильно отличается от положенных -3.

Также польза АЧХ выражается в том, что по ней, хотя и приблизительно, но можно понять, какие проблемы возникнут у выбранной системы. Причем системы в целом. АЧХ страдает от всех элементов тракта. Чтобы понять, как будет звучать система по графику, нужно знать элементы психоакустики. Если коротко, то дело обстоит так: человек разговаривает в пределах средних частот. Поэтому и воспринимает их же лучше всего. И на соответствующих октавах график должен быть наиболее ровным, так как искажения в этой области сильно давят на уши. Также нежелательно наличие высоких узких пиков. Общее правило здесь такое: пики слышны лучше, чем впадины, и острый пик слышен лучше пологого. Подробнее на этом параметре мы остановимся, когда будем рассматривать процесс его измерения.


Фазочастотная характеристика (ФЧХ) показывает изменение фазы гармонического сигнала, воспроизводимого АС в зависимости от частоты. Однозначно может быть вычислена из АЧХ с помощью преобразования Гильберта. Идеальная ФЧХ, говорящая, что система не имеет фазочастотных искажений, прямая, проходящая через начало координат. Акустика с такой ФЧХ называется фазолинейной. Долгое время на эту характеристику не обращали внимания, так как существовало мнение о том, что человек не восприимчив к фазочастотным искажениям. Сейчас же измеряют и указывают в паспортах дорогих систем.


Кумулятивное затухание спектра (КЗС) - совокупность осевых АЧХ (АЧХ, измеренных на акустической оси системы), полученных с определенным временным промежутком при затухании единичного импульса и отраженных на одном трехмерном графике. Таким образом, по графику КЗС можно точно сказать, какие области спектра с какой скоростью будут затухать после импульса, то есть график позволяет выявлять запаздывающие резонансы АС.

Если КЗС имеет много резонансов после верхней середины, то такая акустика субъективно будет звучать "грязно", "с песочком на ВЧ" и т.д.

Импеданс АС - это полное электрическое сопротивление АС, включая сопротивления элементов фильтра (комплексная величина). Это сопротивление содержит в себе не только активное сопротивление, но и реактивные сопротивления емкостей и индуктивностей. Так как реактивное сопротивление зависит от частоты, то и импеданс целиком подчиняется также ей.

Если говорят об импедансе, как о численной величине, начисто лишенной комплексности, то высказываются о его модуле.

График импеданса трехмерный (амплитуда-фаза-частота). Обычно рассматриваются его проекции на плоскости амплитуда-частота и фаза-частота. Если объединить эти два графика, то получится график Боде. А проекция амплитуда-фаза - график Найквиста.

Учитывая то, что импеданс зависит от частоты и не постоянен, по нему можно легко определить, какую сложность представляет собой акустика для усилителя. Также по графику можно сказать, какая это акустика (ЗЯ - закрытый ящик), ФИ (с фазоинвертором), как будут воспроизводиться отдельные участки диапазона.

Чувствительность - см. в параметрах Тиля-Смолла.

Когерентность - согласованное протекание нескольких колебательных или волновых процессов во времени. Означает, что сигнал от разных ГГ акустических систем придет к слушателю одновременно, то есть говорит о сохранности фазовой информации.

Значение комнаты прослушивания

Комната прослушивания (в среде аудиофилов часто сокращают до КдП), да и его условия крайне важны. Некоторые ставят КДП на первое место по важности и уж после нее - акустику, усилитель, источник. Это в некоторой степени оправданно, так как комната способна делать все, что угодно, с измеряемыми микрофоном графиками и параметрами. Могут появляться пики или провалы на АЧХ, которых не было на измерениях в заглушенной комнате. Изменится и ФЧХ (вслед за АЧХ), и переходные характеристики. Для того чтобы уяснить, откуда берутся такие изменения, нужно ввести понятие комнатных мод.

Комнатные моды - это красиво названные комнатные резонансы. Звук излучается акустической системой во все стороны. Звуковые волны отражаются от всего, что только есть в комнате. В общем случае поведение звука в отдельно взятой комнате для прослушивания (КДП) абсолютно непредсказуемо. Есть, конечно же, расчеты, позволяющие оценить влияние различных мод на звук. Но они существуют для пустой комнаты с идеализированным покрытием. Поэтому приводить здесь их не стоит, они не имеют практической ценности в бытовых условиях.

Надо, однако, знать, что резонансы и причины их появления напрямую зависят от частоты сигнала. Так, например, низкие частоты возбуждают моды комнаты, которые обусловлены размерами КДП. Гулкость баса (резонанс на 35-100 Гц) - яркий представитель появления резонансов в ответ на сигнал низкой частоты в стандартной комнате 16-20 м 2 . Высокие частоты порождают несколько иные проблемы: появляются дифракция и интерференция звуковых волн, которые делают характеристику направленности АС частотно-зависимой. То есть направленность АС с ростом частоты становится все более узкой. Из этого следует, что максимальный комфорт получит слушатель на пересечении акустических осей колонок. И только он. Все остальные точки пространства недополучат информации или получат ее искаженной тем или иным образом.

Влияние комнаты на АС можно значительно уменьшить, если заглушить КДП. Для этого применяются различные звукопоглощающие материалы - от плотных штор и ковров до специальных плит и хитрых конфигураций стен и потолка. Чем глуше помещение, тем больший вклад вносит в звучание именно АС, а не отражения от любимого компьютерного стола и горшка с геранью.

Рецепты расстановки колонок в комнате

Фирма Vandersteen рекомендует ставить АС вдоль длинной стены комнаты в точках, где наименьшая вероятность возникновения низкочастотных мод. Нужно начертить план комнаты. На плане поделить длинную стену последовательно на три, пять, семь и девять частей, провести соответствующие линии перпендикулярно этой стене. То же самое проделать и с боковой стеной. Точки пересечения этих линий укажут те места, где возбуждение низких частот в комнате минимальное.

Недостаточность баса, отсутствие плотного и четкого баса:

    попробуйте подвинуть АС поближе к задней стене;

    проверьте, устойчивы ли подставки под АС: при необходимости примените шипы или конусные ножки;

    проверьте, насколько тверда стена за АС. Если стена хлипкая и "призвучивает", поставьте АС перед мощной (капитальной) стеной.

Стереокартина не выходит за пределы пространства, ограниченного АС:

    подвиньте АС поближе друг к другу.

Отсутствует глубина звукового пространства. В центре между АС нет четкого звукового образа:

    подберите оптимальную высоту расположения АС (примените подставки) и вашего положения при прослушивании.

Резкое раздражающее звучание в области средних и высоких частот:

    если АС новые, прогрейте их на музыкальном сигнале в течение нескольких дней;

    убедитесь, нет ли сильных отражений от боковых стен или от пола перед слушателем.

Искажения

От субъективизма нужно переходить к техническим понятиям. Начать стоит с искажений. Они делятся на две большие группы: линейные и нелинейные искажения . Линейные искажения не создают новых спектральных составляющих сигнала, изменяют только амплитудные и фазовые составляющие. (Искажают АЧХ и ФЧХ соответственно.) Нелинейные искажения вносят изменения в спектр сигнала. Количество их в сигнале представляется в виде коэффициентов нелинейных искажений и интермодуляционных искажений.

Коэффициент нелинейных искажений (КНИ, THD - total harmonic distortion) - это показатель, характеризующий степень отличия формы напряжения или тока от идеальной синусоидальной формы. По-русски: на вход подается синусоида. На выходе она сама на себя не похожа, так как тракт вносит изменения в виде дополнительных гармоник. Степень отличия сигнала на входе и на выходе отражается этим коэффициентом.


Коэффициент интермодуляционных искажений - это проявление амплитудной нелинейности, выраженной в виде модуляционных продуктов, появляющихся при подаче сигнала, состоящих из сигналов с частотами f 1 и f 2 (исходя из рекомендации МЭК 268-5, для измерений берутся частоты f 1 и f 2, такие, что f 1 < f 2 /8. Можно взять и другое соотношение между частотами). Количественно интермодуляционные искажения оценивают по спектральным компонентам с частотами f 2 ±(n-1)f 1 , где n=2,3,… На выходе системы сравнивают количество лишних гармоник и оценивают, какой процент спектра они занимают. Результатом сравнения и является коэффициент интермодуляционного искажения. Если измерения проводятся для нескольких n (обычно 2 и 3 достаточно), то итоговый коэффициент интермодуляционных искажений вычисляется из промежуточных (для разных n) путем взятия квадратного корня из суммы их квадратов.

Мощность

О ней можно говорить очень долго, так как видов измеряемых мощностей динамиков много.

Несколько аксиом:

    громкость не зависит только от мощности. Она зависит также от чувствительности самого динамика. А для акустической системы чувствительность определяется чувствительностью самого большого динамика, так как он и есть самый чувствительный;

    указанная максимальная мощность не означает, что можно подать ее на систему и колонки будут отлично играть. Все как раз неприятней. Максимальная мощность в течение длительного времени с высокой вероятностью чего-нибудь повредит в динамике. Гарантия производителя! Мощность следует понимать, как недостижимую границу. Только меньше. Не равно и уж тем более - больше;

    мало того! При максимальной или близкой к ней мощности система будет играть на редкость плохо, потому что искажения вырастут до совершенно неприличных значений.

Мощность акустической системы бывает электрической и акустической. Акустическую мощность увидеть на коробке с акустикой нереально. Видимо, чтобы не отпугнуть клиента маленькой цифрой. Дело в том, что КПД (коэффициент полезного действия) ГГ (головки громкоговорителя) в очень хорошем случае достигает 1%. Обычное же значение лежит до 0.5%. Таким образом, акустическая мощность системы в идеале может составить одну сотую его электрического потенциала. Все остальное рассеивается в виде тепла, тратится на преодоление упругих и вязких сил динамика.

Основные виды мощностей, которые можно увидеть на акустике, такие: RMS, PMPO. Это электрические мощности.

RMS (Root Mean Squared - среднеквадратичное значение) - усредненное значение подводимой электрической мощности. Мощность, измеренная таким образом, имеет смысловую нагрузку. Измеряется подачей синусоиды с частотой 1000 Гц, ограничена сверху заданным значением КНИ (THD). Обязательно необходимо изучить, какой же уровень нелинейных искажений производитель считал допустимым, чтобы не обмануться. Может оказаться так, что система заявлена в 20 Ватт на канал, но измерения проведены при 10% КНИ. В итоге слушать акустику на данной мощности невозможно. Также на RMS-мощности колонки могут играть длительное время.

PMPO (Peak Music Power Output - пиковая выходная музыкальная мощность). Какая польза от того, узнает ли человек о том, что его система, возможно, перенесет коротенький, меньше секунды, синус низкой частоты с большой мощностью? Тем не менее, производители очень любят этот параметр. Ведь на пластиковых колоночках размером с детский кулачок может стоять гордая цифра 100 Ватт. Здоровые коробки советских С-90 и рядом не валялись! :) Как ни странно, к реальной PMPO такие цифры имеют очень отдаленное отношение. Эмпирическим путем (исходя из опыта и наблюдений) можно получить приблизительно реальные ватты. Возьмем Genius SPG-06 для примера (PMPO-120 Ватт). Надо PMPO разделить на 10 (12 Ватт) и на 2 (число каналов). На выходе - 6 Ватт, что похоже на реальный показатель. Еще раз: этот метод не научный, а основан на наблюдениях автора. Обычно работает. Реально этот параметр не так и велик, а огромные цифры основаны только на бурной фантазии маркетингового отдела.

Параметры Тиля-Смолла

Эти параметры полностью описывают динамик. Есть параметры как конструктивные (площадь, масса подвижной системы), так и неконструктивные (которые следуют из конструктивных). Их всего 15 штук. Для того чтобы примерно представить себе, что за динамик работает в колонке, достаточно четырех из них.

Резонансная частота динамика Fs (Гц) - частота резонанса динамика, работающего без акустического оформления. Зависит от массы подвижной системы и жесткости подвеса. Важно знать, так как ниже резонансной частоты динамик практически не звучит (уровень звукового давления сильно и резко падает).

Эквивалентный объем Vas (литры) - полезный объем корпуса, нужный для работы динамика. Зависит только от площади диффузора (Sd) и гибкости подвеса. Важен потому, что, работая, динамик опирается не только на подвес, но и на воздух внутри ящика. Если давление будет не таким, какое нужно, то не видать идеальной работы динамика.

Полная добротность Qts - соотношение упругих и вязких сил в подвижной системе динамика вблизи частоты резонанса. Чем выше добротность, тем выше упругость в динамике и тем более охотно он звучит на резонансной частоте. Складывается из механической и электрической добротностей. Механическая - это упругости подвеса и гофра центрирующей шайбы. Как ни привычно, но именно гофр оказывает большую упругость, а не внешние подвесы. Механическая добротность - 10-15% полной добротности. Все остальное - электрическая добротность, образованная магнитом и катушкой динамика.

Сопротивление постоянному току Re (Ом). Пояснять особо как-то здесь и нечего. Сопротивление обмотки головки постоянному току.

Механическая добротность Qms - отношение упругих и вязких сил динамика, упругость считается только механических элементов динамика. Складывается из упругости подвеса и гофра центрирующей шайбы.

Электрическая добротность Qes - отношение упругих и вязких сил динамика, упругие силы возникают в электрической части динамика (магнит и катушка).

Площадь диффузора Sd (м 2) - меряется, грубо говоря, линейкой. Никакого тайного смысла не имеет.

Чувствительность SPL (дБ) - уровень звукового давления, развиваемого громкоговорителем. Измеряется на расстоянии 1 метра при подводимой мощности 1 Ватт и частоте 1 кГц (обычно). Чем выше чувствительность, тем громче играет система. В двух- и более полосной системе чувствительность равна SPL самого чувствительного динамика (обычно это басовый лопух).

Индуктивность Le (Генри) - это индуктивность катушки динамика.

Импеданс Z (Ом) - комплексная характеристика, которая появляется не на постоянном токе, а на переменном. Дело в том, что в таком случае, реактивные элементы начинают вдруг сопротивляться току. Сопротивление зависит от частоты. Таким образом, импеданс - отношение комплексной амплитуды напряжения и комплексной силы тока на определенной частоте. (Комплексное сопротивление, зависящее от частоты, другими словами).

Пиковая мощность Pe (Ватт) - это PMPO, которая рассмотрена выше.

Масса подвижной системы Mms (г) - эффективная масса подвижной системы, которая включает в себя массу диффузора и колеблющегося вместе с ним воздуха.

Относительная жесткость Cms (метров/ньютон) - гибкость подвижной системы головки громкоговорителя, смещение под воздействием механической нагрузки (например, пальца, который целится потыкать динамик). Чем больше параметр, тем мягче подвес.

Механическое сопротивление Rms (кг/сек) - активное механическое сопротивление головки. Все, что может оказать механическое сопротивление в головке, сюда входит.

Двигательная мощность BL - значение плотности магнитного потока, умноженного на длину провода в катушке. Также этот параметр называется силовым фактором динамика. Можно сказать, что это та мощность, которая будет действовать на диффузор со стороны магнита.

Все перечисленные параметры тесно взаимосвязаны. Это довольно очевидно из определений. Вот основные зависимости:

    Fs растет при увеличении жесткости подвеса и падает с увеличением массы подвижной системы;

    Vas уменьшается при увеличении жесткости подвеса и растет с увеличением площади диффузора;

    Qts растет при увеличении жесткости подвеса и массы подвижной системы и падает при увеличении мощности BL .

Итак, теперь вы знакомы с базовым теоретическим аппаратом, необходимым для понимания статей по акустическим системам. Перейдем же непосредственно к методике тестирования, которой пользуются авторы нашего портала.

Методика тестирования

АЧХ. Методика измерения и трактовка

В начале данного раздела немного отклонимся от основной темы и объясним, зачем все это делается. Во-первых, мы хотим описать наш собственный метод измерения АЧХ, чтобы у читателя не возникало дополнительных вопросов. Во-вторых, мы подробно расскажем, как воспринимать полученные графики и что можно сказать по приведенным зависимостям, а также чего говорить не стоит. Для начала методика.

Измерительный микрофон Nady CM-100

Наша методика измерения АЧХ вполне традиционна и мало чем отличается от общепринятых принципов проведения подробных экспериментов. Собственно сам комплекс состоит из двух частей: железной и софтовой. Начнем с описания реальных приборов, которые используются в рамках нашей работы. В качестве измерительного микрофона мы применяем высокоточный конденсаторный микрофон Behringer ECM-8000 с круговой диаграммой направленности (всенаправленный), при относительно низкой цене он обладает довольно хорошими параметрами. Так сказать, это "сердце" нашей системы. Данный инструмент разработан специально для использования с современной техникой в составе бюджетных измерительных лабораторий. Также в нашем распоряжении имеется похожий микрофон Nady CM-100. Характеристики обоих микрофонов практически повторят друг друга, однако мы всегда указываем каким микрофоном была измерена та или иная АЧХ. Для примера приведем заявленные технические характеристики микрофона Nady CM-100:

    импеданс: 600 Ом;

    чувствительность: -40 дБ (0 дБ = 1 В/Па);

    частотный диапазон: 20-20000 Гц;

    максимальное звуковое давление: 120 дБ SPL;

    питание: фантомное 15…48 В.


АЧХ измерительного микрофона


Микрофонный предусилитель M-Audio AudioBuddy

В качестве микрофонного предусилителя мы используем внешнее компактное решение M-Audio AudioBuddy. Предусилитель AudioBuddy разработан специально для применения в области цифровой звукозаписи и оптимизирован для работы с микрофонами, которым необходимо фантомное питание. Плюс к этому в распоряжении пользователя оказываются независимые выходы: балансные или небалансные TRS. Основные параметры предусилителя таковы:

    частотный диапазон: 5-50 000 Гц;

    микрофонное усиление: 60 дБ;

    входное сопротивление микрофонного входа: 1 кОм;

    усиление инструментов: 40 дБ;

    входное сопротивление инструментального входа: 100 кОм;

    питание: 9 В АС, 300 мА.


Звуковая плата ESI Juli@

Для дальнейшего анализа сигнал с выхода усилителя поступает на вход компьютерного аудио интерфейса, в качестве которого используется PCI-плата ESI Juli@. Данное решение смело можно отнести к классу полупрофессиональных устройств или даже профессиональных начального уровня. Основные параметры:

    количество I/O: 4 входа (2 аналоговых, 2 цифровых), 6 выходов (2 аналоговых, 4 цифровых);

    АЦП/ЦАП: 24-бит/192 кГц;

    частотный диапазон: 20 Гц - 21 кГц, +/- 0.5 дБ;

    динамический диапазон: АЦП 114 дБ, ЦАП 112 дБ;

    входы: 2 аналоговых, 2 цифровых (S/PDIF Coaxial);

    выходы: 2 аналоговых, 2 цифровых (S/PDIF Coaxial или Optical);

    MIDI: 1 MIDI вход и 1 MIDI выход;

    интерфейс: PCI;

    синхронизация: MTC, S/PDIF;

    драйверы: поддержка EWDM драйвера для Windows 98SE/ME/2000 и XP, MAC OS 10.2 или старше.



В целом, неравномерность тракта всей системы в диапазоне частот 20-20000 Гц лежит в пределах +/- 1…2 дБ, поэтому наши измерения можно считать довольно точными. Основным негативным фактором является то, что все замеры проводятся в среднестатистическом жилом помещении со стандартной реверберацией. Площадь комнаты составляет 34 м 2 , объем - 102 м 3 . Использование безэховой камеры, естественно, повышает точность получаемого результата, однако стоимость такой камеры составляет минимум несколько десятков тысяч долларов, поэтому позволить себе такую "роскошь" могут лишь крупные производители акустических систем или же иные весьма обеспеченные организации. Однако есть в этом и ощутимые плюсы: так, АЧХ в реальном помещении всегда будет далека от АЧХ, которая получена производителем в тестовой камере. Поэтому по нашим результатам мы можем сделать некоторые выводы по взаимодействию конкретной акустики со среднестатистической комнатой. Данная информация тоже очень ценна, ведь любая система будет эксплуатироваться в реальных условиях.


Популярная утилита RightMark Audio Analyzer

Вторым немаловажным моментом является программная часть. В нашем распоряжении есть несколько профессиональных программных комплексов, таких как RightMark Audio Analyzer ver. 5.5 (RMAA), TrueRTA ver. 3.3.2, LSPCad ver. 5.25, и т.д. Как правило, мы используем удобную утилиту RMAA, при условии бесплатного распространения и постоянных обновлений она весьма практична и обеспечивает высокую точность измерений. Фактически, она уже стала стандартом среди тестовых пакетов во всем рунете.


Программа TrueRTA


Измерительный модуль JustMLS программы LSPCad

Казалось бы, любое измерение должно проводиться по строго установленным правилам, однако в области акустики данных правил слишком много, и зачастую они несколько расходятся между собой. Например, основные нормы и методы измерения приводятся сразу в нескольких весьма весомых документах: устаревшие ГОСТЫ СССР (ГОСТ 16122-87 и ГОСТ 23262-88), рекомендации МЭК (публикации 268-5, 581-5 и 581-7), немецкий стандарт DIN 45500, а также американские положения AES и EIA.

Свои измерения мы производим следующим образом. Акустическая система (АС) устанавливается в центре комнаты при максимальном удалении от стен и объемных предметов, для инсталляции используется качественная стойка высотой 1 м. Микрофон устанавливается на расстоянии порядка метра на прямой оси. Высота выбирается таким образом, что бы микрофон "смотрел" примерно в центральную точку между динамиками СЧ и ВЧ. Полученная АЧХ называется характеристикой, снятой на прямой оси, и в классической электроакустике считается одним из важнейших параметров. Считается, что верность воспроизведения напрямую зависит от неравномерности АЧХ. Однако об этом читайте чуть ниже. Также мы всегда измеряем угловые характеристики системы. В идеальном случае необходимо получать целый набор зависимостей в вертикальной и горизонтальной плоскостях с шагом 10…15 градусов. Тогда вполне обосновано можно сделать выводы о диаграмме направленности колонок, дать советы по верной расстановке в пространстве. По сути, угловые АЧХ имеют не меньшее значение, нежели АЧХ по прямой оси, поскольку они определяют характер звука, доходящего до слушателя после отражения от стен помещения. По некоторым данным, доля отражений в точке прослушивания достигает 80% и более. Также мы снимаем все возможные характеристики тракта при всех имеющихся частотных регулировках, режимах типа 3D, и т.д.

Упрощенная блок-схема процесса измерений


По этим графикам можно сказать многое…

Субъективное прослушивание

Итак, графики АЧХ получены. Что можно сказать, подробно изучив их? На самом деле сказать можно много, но оценить однозначно систему по данным зависимостям невозможно. Мало того, что АЧХ - это не очень информативная характеристика, и требуется еще целый ряд дополнительных измерений, например, импульсной характеристики, переходной характеристики, кумулятивного затухания спектра, и др., так даже по этим исчерпывающим зависимостям дать однозначную оценку акустики довольно сложно. Веским доказательством тому может служить официально заявление AES (Journal of AES, 1994 год), что субъективная оценка просто необходима для получения полного представления об акустической системе в сумме с объективными измерениями. Иными словами, человек может слышать некий артефакт, а понять, откуда он берется, можно, лишь проведя ряд точных замеров. Иногда измерения помогают выявить несущественный недостаток, который запросто может проскользнуть мимо ушей при прослушивании, и "поймать" его можно, только акцентировав свое внимание именно на этом диапазоне.

Для начала необходимо разбить весь частотный диапазон на характерные участки, чтобы было понятно, о чем идет речь. Согласитесь, когда мы говорим "средние частоты", ведь непонятно, сколько это: 300 Гц или 1 кГц? Посему предлагаем пользоваться удобной разбивкой всего звукового диапазона на 10 октав, описанной в предыдущем разделе.

Наконец, переходим непосредственно к моменту субъективного описания звука. Существуют тысячи терминов для оценки слышимого. Наиболее оптимальным вариантом является использование некой документированной системы. И такая система есть, ее предлагает авторитетнейшее издание с полувековой историей Stereophile. Относительно недавно (в начале 90-х гг. прошлого века) был опубликован акустический словарь Audio Glossary под редакцией Гордона Холта. В словаре изложена трактовка более 2000 понятий, которые тем или иным образом относятся к звуку. Мы предлагаем ознакомиться лишь с малой их частью, которая относится к субъективному описанию звука в переводе Александра Белканова (Журнал "Салон АВ"):

    ah-ax (рифмуется с "rah" - Ура). Окраска гласных, вызываемая пиком в АЧХ в районе 1000 Гц.

    Airy - воздушность. Относится к ВЧ, звучащим легко, нежно, открыто, с ощущением неограниченного верха. Свойство системы, имеющей очень ровную характеристику на высоких частотах.

    aw - (рифмуется с "paw" [ро:] - лапа). Окраска гласных, вызываемая пиком в АЧХ в районе 450 Гц. Стремится подчеркнуть, приукрасить звучание больших медных (тромбон, труба).

    Boomy - прочтите слово "бум" с долгим "м". Характеризует избыток среднего баса, зачастую с преобладанием узкой полосы НЧ (очень близко к "one-note-bass" - бас на одной ноте).

    Boxy (дословно - "ящичный"): 1) характеризуемый "oh"- окраской гласных, будто внутри ящика говорит голова; 2) используется для описания верхнего баса/нижней середины звучания акустических систем с чрезмерными резонансами стенок корпуса.

    Bright, brilliant - яркий, с блеском, сверкающий. Зачастую неверно употребляемый в аудио термин, он описывает степень твердости грани воспроизводимого звука. Яркость относится к энергии, содержащейся в полосе 4-8 кГц. Это не относится к самым верхним частотам. Все живые звуки обладают яркостью, проблема возникает лишь при ее избыточности.

    Buzz - жужжащий НЧ звук, имеющий пушистый из-за некоторой неопределенности или усаженный остриями характер.

    Chesty - от chest (грудная клетка). Резко выраженная плотность или тяжесть при воспроизведении мужского голоса из-за чрезмерной энергии в верхнем басе/нижней части СЧ.

    Closed-in (дословно - спрятанный, закрытый). Нуждается в открытости, воздухе и хорошей детальности. Закрытое звучание обычно вызвано спадом ВЧ выше 10 кГц.

    Cold - холодный, более сильный, чем cool - прохладный. Имеет некоторый избыток ВЧ и ослабленные низкие.

    Coloration - окраска. Слышимая "сигнатура", которой воспроизводящая система окрашивает все сигналы, проходящие через нее.

    Cool - прохладный. Умеренно лишенный плотности и теплоты вследствие монотонного затухания, начиная с частоты 150 Гц.

    Crisp - четкий, ясно очерченный. Точно локализованный и детальный, иногда чрезмерно из-за пика в середине ВЧ диапазона.

    Cupped-hands - рупор из ладоней. Окраска с носовым призвуком или в крайнем проявлении - звук через мегафон.

    Dark - темный, мрачный (дословно). Теплое, мягкое, чрезмерно богатое звучание. Воспринимается на слух как наклон АЧХ по часовой стрелке во всем диапазоне, так что выходной уровень ослабляется с ростом частоты.

    Dip (дословно - погружение, провал). Узкий провал посреди ровной АЧХ.

    Discontinuity (дословно - разрыв). Изменение тембра или окраски при переходе сигнала от одной головки к другой в многополосных акустических системах.

    Dished, dished-down - в виде блюдца, перевернутого блюдца. Описывает АЧХ с проваленной серединой. В звучании много баса и верхних частот, глубина преувеличена. Восприятие, как правило, безжизненное.

    Dry (дословно - сухой). Описывает качество баса: обедненный, скудный, как правило, передемпфированный.

    Dull (дословно - тупой, тусклый, скучный, вялый, подавленный). Описывает безжизненное, завуалированное звучание. Такой же, как "soft" - мягкий, но в большей степени. Слышимый эффект спада ВЧ после 5 кГц.

    ее - рифмуется с we. Окраска гласных, вызванная пиком в АЧХ в районе 3,5 кГц.

    eh - как в "bed". Окраска гласных, вызванная коротким подъемом АЧХ в районе 2 кГц.

    Extreme highs - сверхвысокие. Диапазон слышимых частот выше 10 кГц.

    Fat (дословно - обильный, богатый, жирный, маслянистый). Слышимый эффект умеренной избыточности среднего и верхнего баса. Чрезмерно теплый, больше "warm".

    Forward, forwardness (дословно - выдвинутый на передний план, придвинутость). Качество воспроизведения, создающее впечатление, что источники звука расположены ближе, чем они находились при записи. Как правило, это результат "горба" в среднем диапазоне плюс узкой направленности акустических систем.

    Glare (дословно - ослепительный, сверкающий). Неприятное качество жесткости или яркости вследствие чрезмерной энергии нижнего или среднего верха.

    Golden (дословно - золотой). Благозвучная окраска, характеризуемая округлостью, богатством, мелодичностью.

    Hard (дословно - твердый, жесткий). Стремящийся к стальному, но не столь пронзительный. Часто это результат умеренного "горба" в районе 6 кГц, иногда вызван небольшими искажениями.

    Horn sound - рупорный звук, сделанный через рупор. Окраска "aw", присущая многим акустическим системам, имеющим среднечастотный рупорный излучатель.

    Hot (дословно - горячий). Резкий резонансный выброс в высоких частотах.

    Hum (дословно - жужжание). Непрерывный "зуд" на частотах, кратных 50 Гц. Вызван прониканием основной частоты питания либо его гармоник в тракт воспроизведения.

    Humped (дословно - сгорбленный). Характеризует звучание, выдвинутое вперед (по пространственной характеристике). Общее звучание вялое, скудное. Вызвано широким подъемом средних частот и довольно ранним спадом низких и высоких.

    ih - как в слове "bit". Окраска гласных, вызванная пиком в АЧХ в районе 3,5 кГц.

    Laid-back (дословно - отодвинутый назад, задвинутый). Подавленное, отдаленное звучание, с преувеличенной глубиной, обычно из-за проваленного в виде блюдца среднего диапазона.

    Lean - худой, тощий, хилый. Эффект слабого спада АЧХ вниз, начиная с 500 Гц. Выражен слабее, чем "cool" - прохладный.

    Light - светлый. Слышимый эффект наклона АЧХ против часовой стрелки относительно середины. Сравни с "dark" - темный.

    Loose - рыхлый, болтающийся, неустойчивый. Относится к плохо выраженному/размытому и плохо управляемому басу. Проблемы с демпфированием усилителя или динамических головок/акустического оформления колонок.

    Lumpy (дословно - комковатый). Звучание, характеризуемое некоторой прерывностью АЧХ в нижней части, начиная с 1 кГц. Некоторые области кажутся выпяченными, другие - ослабленными.

    Muffled - приглушенный. Звучащий очень вяло, тупо, вовсе не имеющий в спектре высоких частот. Результат спада высоких частот выше 2 кГц.

    Nasal (дословно - гнусавый, носовой). Звучание похоже на то, если говорить с заложенным или зажатым носом. Похоже на окраску гласного "eh". В акустических системах причиной этого часто является измеряемый пик давления в верхней части среднего диапазона, сопровождаемый последующим провалом.

    oh - произношение как в слове "toe". Окраска гласного, вызываемая широким выбросом в АЧХ в районе 250 Гц.

    One-note-bass - бас на одной ноте. Преобладание одной низкой ноты - следствие острого пика в нижнем диапазоне. Обычно вызван плохим демпфированием НЧ головки, так же могут проявляться резонансы помещения.

    оо - произношение как в слове "gloom". Окраска гласного, вызвана широким выбросом в АЧХ в районе 120 Гц.

    Power range - диапазон максимальной энергии. Область частот примерно 200-500 Гц соответствует диапазону мощных инструментов оркестра - медных духовых.

    Presence range (дословно - диапазон присутствия). Нижняя часть верхнего диапазона примерно 1 -3 кГц, создающая ощущение присутствия.

    Reticent (буквально - сдержанный). Умеренно отодвинутый назад. Описывает звучание системы, АЧХ которой имеет форму блюдца в среднем диапазоне. Противоположно forward.

    Ringing (буквально - звон). Слышимый эффект резонанса: окраска, смазанное/размытое звучание, пронзительность, гудение. Имеет природу узкого выброса на АЧХ.

    Seamless (дословно - без шва, из единого/цельного куска). Не имеет ощутимых разрывов во всем слышимом диапазоне.

    Seismic - сейсмический. Описывает воспроизведение НЧ, при котором создается впечатление, будто дрожит пол.

    Sibilance (буквально - свист, шипение). Окраска, подчеркивающая вокальный звук "с". Может быть связана с монотонным подъемом АЧХ от 4-5 кГц либо с широким выбросом в полосе 4-8 кГц.

    Silvery - серебристый. Несколько жесткое, но чистое звучание. Флейте, кларнету, альтам придает очерченность, но гонгу, колокольчикам, треугольнику может сообщить навязчивость, чрезмерную резкость.

    Sizzly - шипящий, свистящий. Подъем АЧХ в районе 8 кГц, добавляется шипение (присвист) ко всем звукам, особенно к звучанию тарелок и шипящим в вокальных партиях.

    Sodden, soggy (буквально - промокший, набухший от воды). Описывает рыхлый и плохо определенный бас. Создает ощущение неясности, неразборчивости в нижнем диапазоне.

    Solid-state sound - транзисторное звучание, звук полупроводников. Комбинация звуковых качеств, общая для большинства транзисторных усилителей: глубокий, плотный бас, слегка отодвинутый яркий характер сцены и ясно очерченные, детальные ВЧ.

    Spitty (дословно - плюющий, фыркающий, шипящий). Резкая "ts" - окраска, излишне подчеркивающая музыкальные обертоны и шипящие. Похожа на шум поверхности виниловой пластинки. Обычно, результат острого пика АЧХ в области крайних ВЧ.

    Steely - стальной, сталистый. Описывает пронзительность, резкость, назойливость. Подобно "hard", но в большей степени.

    Thick - жирный, густой, тупой. Описывает промокший/тупой или громоздкий, тяжелый бас.

    Thin - жидкий, хилый, истонченный. Очень недостаточный по басу. Результат сильного, монотонного затухания вниз, начиная с 500 Гц.

    Tizzy (дословно - волнение, тревога), "zz" и "ff"-окраска звука тарелок и вокальных шипящих, вызванная ростом АЧХ выше 10 кГц. Подобна "wiry", но на более высоких частотах.

    Tonal quality - тональное качество. Точность/корректность, с которой воспроизводимый звук повторяет тембры оригинальных инструментов. (Мне кажется, этот термин будет хорошей заменой тембральному разрешению - А. Б.).

    Tube sound, tubey - звук, обязанный присутствию ламп в тракте записи/воспроизведения. Комбинация звуковых качеств: сочность (богатство, живость, яркость красок) и теплота, избыток среднего и недостаток глубокого баса. Выпирающее изображение сцены. Верха гладкие, тонкие.

    Wiry - жесткий, напряженный. Вызывает раздражение искаженными верхними частотами. Подобен удару щеточек по тарелкам, но способен окрасить все звуки, воспроизводимые системой.

    Wooly - вялый, расплывчатый, мохнатый. Относится к болтающемуся, рыхлому, плохо определенному басу.

    Zippy - живой, быстрый, энергичный. Незначительное выделение верхних октав.

Итак, теперь, глядя на приведенную АЧХ, можно охарактеризовать звучание одним или несколькими терминами из данного списка. Главное, что термины системные, и даже неопытный читатель может, посмотрев их значение, понять, что хотел сказать автор.

На каком же материале тестируется акустика? При выборе тестового материала мы руководствовались принципом разнообразия (ведь каждый использует акустику в совершенно различных применениях - кино, музыка, игры, не говоря уже про различные вкусы в музыке) и качества материала. В этой связи набор тестовых дисков традиционно включает:

    DVD-диски с фильмами и записями концертов в форматах DTS и DD 5.1;

    диски с играми для PC и Xbox 360, обладающими качественными саунд-треками;

    качественно записанные CD-диски с музыкой различных жанров и направлений;

    MP3-диски со сжатой музыкой, материал, который в основном прослушивается на MM-акустике;

    специальные тестовые CD и HDCD-диски аудиофильского качества.

Остановимся подробнее на тестовых дисках. Их предназначение - выявлять недостатки акустических систем. Выделяют тестовые диски с тестовым сигналом и с музыкальным материалом. Тестовые сигналы представляют собой сгенерированные реперные частоты (позволяют определить на слух граничные значения воспроизводимого диапазона), белый и розовый шумы, сигнал в фазе и противофазе и так далее. Наиболее интересными нам кажутся популярный тестовый диск FSQ (Fast Sound Quality) и Prime Test CD . Оба этих диска помимо искусственных сигналов содержат фрагменты музыкальный композиций.

Ко второй категории относятся аудифильские диски, содержащие целые композиции, записанные в студиях высочайшего качества и прецизионно сведенные. Мы используем два лицензионных HDCD-диска (записанные с разрядностью 24 бита и частотой семплирования 88 КГц) - Audiophile Reference II (First Impression Music) и HDCD Sampler (Reference Recordings), а также CD-сэмплер классической музыки Reference Classic того же лейбла Reference Recordings.

Audiophile Reference II (диск позволяет оценить такие субъективные характеристики, как музыкальное разрешение, вовлеченность, эмоциональность и эффект присутствия, глубину нюансов звучания различных инструментов. Музыкальный материал диска - классические, джазовые и фольклорные произведения, записанные с высочайшим качеством и спродюссированные известным кудесником звука Уинстоном Ма. На записи можно встретить великолепный вокал, мощные китайские барабаны, глубокий струнный бас и на действительно качественной системе получить настоящее наслаждение от прослушивания.

HDCD Sampler от Reference Recordings содержит симфоническую, камерную и джазовую музыку. На примере его композиций можно отслеживать способность акустических систем строить музыкальную сцену, передавать макро- и микродинамику, натуральность тембров различных инструментов.

Reference Classic демонстрирует нам настоящий конек Reference Recordings - записи камерной музыки. Основное предназначение диска - проверять систему на верность воспроизведения различных тембров и способность к созданию правильного стереоэффекта.

Z-характеристика. Методика измерения и трактовка

Наверняка даже самый неопытный читатель знает, что любая динамическая головка, а, следовательно, и акустическая система в целом обладает постоянным сопротивлением. Данное сопротивление может расцениваться как сопротивление постоянному току. Для бытовой аппаратуры наиболее привычны цифры 4 и 8 Ом. В автомобильной технике зачастую встречаются динамики с сопротивлением 2 Ом. Сопротивление хороших мониторных наушников может достигать сотен Ом. С точки зрения физики данное сопротивление обусловлено свойствами проводника, из которого намотана катушка. Однако динамики, как и наушники, предназначены для работы с переменным током звуковой частоты. Ясно, что с изменением частоты изменяется и комплексное сопротивление. Зависимость, характеризующая это изменение, называется Z-характеристикой. Z-характеристика довольно важна для изучения, т.к. именно с помощью нее можно сделать однозначные выводы о правильности согласования динамика и усилителя, правильности расчета фильтра, и т.д. Для снятия данной зависимости мы используем программный пакет LSPCad 5.25, а точнее - измерительный модуль JustMLS. Его возможности таковы:

    Размер MLS (Maximum-Length Sequence): 32764,16384,8192 и 4096

    Размер FFT (Fast Fourier Transform): 8192, 1024 и 256 точек, используемых в различных полосах частот

    Частота дискретизации: 96000, 88200, 64000, 48000, 44100, 32000, 22050, 16000, 1025, 8000 Гц и выбираемая пользователем Custom (Выбрать).

    Окно: Половинное смещение

    Внутреннее представление: От 5 Гц до 50000 Гц, 1000 частотных точек с логарифмической периодичностью.

Для измерения необходимо собрать простенькую схему: последовательно с динамиков включается эталонный резистор (в нашем случае С2-29В-1), и сигнал с данного делителя подается на вход звуковой платы. Вся система (динамик/АС+резистор) подключается через усилитель мощности ЗЧ к выходу той же звуковой карты. Мы используем для этих целей интерфейс ESI Juli@. Программа очень удобна тем, что не требует тщательной и долгой настройки. Достаточно откалибровать звуковые уровни и нажать кнопку "Измерить". Через доли секунды мы видим готовый график. Далее происходит его анализ, в каждом конкретном случае мы преследуем разные цели. Так, при изучении низкочастотного динамика нас интересует резонансная частота для проверки правильности выбора акустического оформления. Знание резонансной частоты высокочастотной головки позволяет проанализировать правильность решения разделительного фильтра. В случае пассивной акустики нас интересует характеристика в целом: она должна быть максимально линейной, без резких пиков и провалов. Так, например, акустика, импеданс которой проседает ниже 2 Ом, придется "не по вкусу" практически любому усилителю. Такие вещи следует знать и учитывать.

Нелинейные искажения. Методика измерения и трактовка

Нелинейные искажения (Total Harmonic Distortion, THD) являются важнейшим фактором при оценке акустических систем, усилителей, и т.д. Данный фактор обусловлен нелинейностью тракта, вследствие чего в спектре сигнала появляются дополнительные гармоники. Коэффициент нелинейных искажений (КНИ) рассчитывается как отношение квадрата основной гармоники к корню квадратному из суммы квадратов дополнительных гармоник. Как правило, при расчетах учитывается только вторая и третья гармоника, хотя точность можно повысить, учтя все дополнительные гармоники. Для современных акустических систем коэффициент нелинейных искажений нормируется в нескольких полосах частот. Например, для нулевой группы сложности по ГОСТ 23262—88, требования которого значительно превышают минимальные требования МЭК класса Hi-Fi, коэффициент не должен превышать 1.5% в полосе частот 250-2000 Гц и 1% в полосе 2-6.3 кГц. Сухие цифры, конечно, характеризуют систему в целом, однако фраза "КНИ=1%" еще мало о чем говорит. Яркий пример: ламповый усилитель с коэффициентом нелинейных искажений порядка 10% может звучать намного лучше транзисторного усилителя с тем же коэффициентом менее 1%. Дело в том, что искажения лампы в основном обусловлены теми гармониками, которые экранируются слуховыми порогами адаптации. Поэтому очень важно анализировать спектр сигнала в целом, описывая значения тех или иных гармоник.


Так выглядит спектр сигнала конкретной акустики на контрольной частоте 5 кГц

В принципе посмотреть распределение гармоник по спектру можно любым анализатором, как хардварным, так и софтовым. Без проблем это делают те же программы RMAA или TrueRTA. Как правило, мы используем первую. Тестовый сигнал генерируется с помощью простейшего генератора, используется несколько контрольных точек. Так, например, возросшие на высоких частотах нелинейные искажения значительно уменьшают микродинамику музыкального образа, а система с высокими искажениями в целом может просто-напросто сильно искажать тембральный баланс, хрипеть, иметь посторонние призвуки, и т.д. Также данные измерения позволяют более детально оценить акустику в комплексе с другими измерениями, проверить правильность расчета разделительных фильтров, ведь нелинейные искажения динамика сильно возрастают вне его рабочего диапазона.

Структура статьи

Здесь мы опишем структуру статьи по акустическим системам. Несмотря на то, что мы стараемся сделать прочтение максимально приятным и не втискиваем себя в определенные рамки, статьи составляются с учетом данного плана, для того чтобы структура была четкой и понятной.

1. Введение

Здесь пишется общая информация о компании (если мы впервые знакомимся с ней), общая информация о линейке продукции (если впервые берем на тест), даем очерк состояния рынка на текущий момент. Если предыдущие варианты не подходят - пишем о тенденциях на рынке акустики, в дизайне и т.д. - чтобы было написано 2-3 тысячи символов (в дальнейшем - к). Указывается тип акустики (стерео, объемного звучания, трифоник, 5.1 и т.д.) и позиционирование на рынке - как мультимедиа-игровая для компьютера, универсальная, для прослушивания музыки для домашнего театра начального уровня, пассивная для домашнего театра и т.д.

Тактико-технические характеристики, сведенные в таблицу. Перед таблицей с ТТХ делаем небольшое вступление (например "от акустики стоимостью ХХХ мы вправе ожидать серьезных параметров YYY"). Вид таблицы и набор параметров следующий:

Для систем 2.0

Параметр

Значение

Выходная мощность, Вт (RMS)

Внешние размеры колонок, ШхДхВ, мм

Вес брутто, кг

Вес нетто, кг

Диаметр динамиков, мм

Сопротивление динамиков, Ом

Напряжение питания, В

Частотный диапазон, Гц

Неравномерность АЧХ в рабочем диапазоне, +/- дБ

Регулировка низких частот, дБ

Перекрестные помехи, дБ

Отношение сигнал/шум, дБ

Комплектность

Средняя розничная цена, $

Для систем 2.1

Параметр

Значение

Выходная мощность сателлитов, Вт (RMS)

КНИ при номинальной мощности, %

Внешние размеры сателлитов, ШхДхВ, мм

Вес брутто, кг

Вес нетто сателлитов, кг

Вес нетто сабвуфера, кг

Диаметр динамиков, мм

Сопротивление динамиков, Ом

Магнитное экранирование, наличие

Напряжение питания, В

Регулировка высоких частот, дБ

Регулировка низких частот, дБ

Перекрестные помехи, дБ

Отношение сигнал/шум, дБ

Комплектность

Средняя розничная цена, $

Для систем 5.1

Параметр

Значение

Выходная мощность фронтальных сателлитов, Вт (RMS)

Выходная мощность тыловых сателлитов, Вт (RMS)

Выходная мощность центрального канала, Вт (RMS)

Выходная мощность сабвуфера, Вт (RMS)

Выходная мощность суммарная, Вт (RMS)

КНИ при номинальной мощности, %

Внешние размеры фронтальных сателлитов, ШхДхВ, мм

Внешние размеры тыловых сателлитов, ШхДхВ, мм

Внешние размеры центрального канала, ШхДхВ, мм

Внешние размеры сабвуфера, ШхДхВ, мм

Вес брутто, кг

Вес нетто фронтальных сателлитов, кг

Вес нетто тыловых сателлитов, кг

Вес нетто центрального канала, кг

Вес нетто сабвуфера, кг

Диаметр динамиков, мм

Сопротивление динамиков, Ом

Магнитное экранирование, наличие

Напряжение питания, В

Частотный диапазон сателлитов, Гц

Частотный диапазон сабвуфера, Гц

Неравномерность АЧХ в полном рабочем диапазоне, +/- дБ

Регулировка высоких частот, дБ

Регулировка низких частот, дБ

Перекрестные помехи, дБ

Отношение сигнал/шум, дБ

Комплектность

Средняя розничная цена, $

За основу мы берем приведенные таблицы, при наличии дополнительных данных делаем еще графы, графы для которых данных нет, просто убираем. После таблицы с ТТХ небольшие предварительные выводы.

3. Упаковка и комплектация

Описываем комплект поставки и коробку, минимум две фотографии. Тут оцениваем полноту комплекта, описываем характер входящих в комплект кабелей, по возможности оцениваем их сечение/диаметр. Делаем вывод о соответствии комплекта ценовой категории, удобстве и дизайне упаковки. Отмечаем наличие русскоязычного руководства по эксплуатации, его полноту.

4. Дизайн, эргономика и функциональность

Описываем первое впечатление от дизайна. Отмечаем характер материалов, их толщину, добротность. Оцениваем дизайнерские решения с точки зрения потенциального влияния на звук (не забывая добавлять слово "предположительно"). Оцениваем качество изготовления, наличие ножек/шипов, гриля/акустической ткани перед диффузорами. Ищем крепления, возможность установки на стойку/полку/стену.

Описывается эргономика и впечатления от работы с акустикой (исключая прослушивание). Отмечается наличие щелчка при включении, достаточна ли длина проводов, удобно ли пользоваться всеми органами управления. Реализация органов управления (аналоговые ползунки или "крутелки", цифровые валкодеры, тумблеры и т.д.) Несколько фотографий органов управления, ПДУ если есть, фото колонок в обстановке или в сравнении с обычными предметами. Удобство и скорость коммутации, необходимость проверки фазировки, помогает ли инструкция и т.д. Отмечаем эффективность магнитного экранирования (на ЭЛТ-мониторе или телевизоре). Обращаем внимание на дополнительные входы, режимы работы (псевдо-сюрраунд звучание, встроенный FM-тюнер и т.р.), сервисные возможности.

5. Конструкция

Разбираем колонки, если есть сабвуфер - то ещё и его. Отмечаем следующие конструктивные особенности:

    Тип акустического оформления (открытое, закрытий ящик, фазоинвертор, пассивный излучать, трансмиссионная линия и т.д.) + общее фото внутреннего строения;

    Размеры и внутренний объем корпуса, предположить сочетаемость АО с ГГ;

    Расположение головок громкоговорителя (ГГ), способ крепления к акустическому оформлению;

    Качество внутреннего монтажа, сборки, крепления + 1-2 фото с деталями внутреннего монтажа;

    Наличие механического демпфирования, качество его исполнения и примененные материалы + фото;

    Форма и размеры фазоинвертора (если есть), его расположение (предположительное влияние на звук) и вероятные приспособления изготовителя для устранения струйных шумов + фото;

    Качество внутренней проводки, наличие защиты от перегрузки, предложения по модернизации;

    Используемые ГГ - тип, материал изготовления (бумага, пропитанный шелк, алюминий, пластик и т.д.), характер поверхности диффузора (конический, экспоненциальная поверхность, гофрированный, с "ребрами жесткости" и т.д.) и защитного колпачка (плоский, "акустическая пуля" и т.д.), подвес (резиновый, бумажный и т.д.), степень жесткости подвеса), диаметр катушки, охлаждение у твиттера, маркировка, сопротивление + фото каждой ГГ;

    Тип крепления провода к колонкам (безразъемное, винтовые зажимы, пружинные зажимы, под "банан" и т.л.) + фото;

    Разъемы для сигнального кабеля - типы, количество, качество исполнения.

Схемами и графиками мы иллюстрируем следующие вещи:

    Усилительная микросхема(ы) - таблица с ключевыми характеристиками, их анализ на соответствие ТТХ и динамикам, если есть возможность - привести график зависимости мощности от КНИ и фото, можно фото радиатора;

    Трансформатор питания - таблица с токами, тип трансформатора (тор, на Ш-образных пластинах и т.д.) с указанием общей мощности в ВА, выводы о наличии запаса мощности по питанию, наличие фильтра питания и т.д. + фото;

    Разделительный фильтр - зарисовываем схему, указываем порядок фильтра (и соответственно ослабление сигнала), делаем вывод об оправданности; применения (при наличии соответствующих измерений), делаем расчет частоты среза в случае если в дальнейшем измеряем резонанс и/или Z-характеристику;

    Делаем расчет резонансной частоты фазоинвертора, приводим формулу и обосновываем ее использование.

6. Измерения

Делаем следующие измерения и приводим анализ по каждому из них, делаем предположения по характеру звучания.

    Осевая АЧХ колонки с подробным анализом;

    АЧХ колонок по углами 30 и 45 градусов, анализ характера дисперсии динамика;

    АЧХ сабвуфера (если есть) + суммарная АЧХ систем, анализ качества; согласования трифоника, влияние резонанса фазоинвертора;

    Осевая АЧХ в зависимости от регулировок тембра (если есть);

    АЧХ у фазоинвертора, анализ;

    Спектр гармонических искажений;

    АЧХ динамиков по отдельности (например НЧ и ВЧ), если в этом есть необходимость.

7. Прослушивание

Вначале даем первую субъективную оценку характеру звучания, указываем, достаточна ли громкость для различных режимов воспроизведения. Отмечаем особенности работы акустики в каждом из типичных применений - кино (для 5.1 систем делаем упор на качество позиционирования), музыка и игры. Указываем тип помещения для прослушивания, его площадь и объем, а также степень требовательности данной акустики к помещению. Далее мы разбираем звучание колонок, используя описанный выше список характеристик и терминологию. Стараемся избегать субъективных замечаний и при каждой возможности делаем сноску на результат измерений, подтвердивший ту или иную особенность звучания. Вообще весь анализ звучания делается в ключе увязки с измерениями. Обязательно обращается внимание на следующие параметры:

    Характер работы акустики в каждом из ключевых диапазонов частот, насколько тот или иной диапазон акцентируется;

    Характер и качество стереоэффекта (ширины сцены, позиционирования на ней источников звука и инструментов), для акустики 5.1 отдельно дается оценка пространственного позиционирования. Не забываем правильно расставить акустику (угол на фронтальную пару 45 градусов, расстояние чуть больше стереобазы, тыловая пара вдвое ближе к слушателю, чем фронтальная, все колонки на уровне ушей);

    Детальность, прозрачность звучания, "зернистость" (послеимпульсная активность на средних и высоких частотах);

    Наличие окраски и её характер в разных диапазонах, тембральный баланс и естественность звучания;

    Четкость звуковой атаки (импульсная характеристика) и отдельно - работа сабвуфера (если есть);

    Насыщенность сигнала гармониками (теплота или холодность звучания);

    Микро- и макродинамика звучания, детальность фоновых звуков, "открытость" или "зажатость" звучания (ширина динамического диапазона, качество переходной характеристики ГГ);

    Оптимальные значения регулировок тембра.

Здесь дается общая оценка акустике, в первую очередь, соответствие примененных в ней решений конечному результату и ценовой категории. Оценивается, насколько акустика удачна, перспектива, подходит в качестве "заготовки" для модификаций. Дается список плюсов и минусов системы.

Заключение

Усидчивый читатель, завершив чтение этой статьи, наверняка вынес что-то новое и интересное для себя. Мы не пытались объять необъятное и осветить все возможные аспекты анализа акустических систем и, тем более, теории звука, оставим это профильным изданиям, у каждого из которых свой взгляд на ту грань, где кончается физика и начинается шаманство. Зато теперь все аспекты тестирования акустики авторами нашего портала должны быть предельно ясны. Мы не устаем повторять, что звук - дело субъективное, и руководствоваться при выборе акустики одними тестами нельзя, однако надеемся, что наши обзоры значительно помогут вам. Хорошего вам звука, уважаемые читатели!


Акустическая система (Общие понятия и наиболее часто задаваемые вопросы)

1. Что такое акустическая система (АС)?

Это устройство для эффективного излучения звука в окружающее пространство в воздушной среде, содержащее одну или несколько головок громкоговорителей (ГГ), необходимые акустическое оформление (АО) и электрические устройства, как то переходные фильтры (ПФ), регуляторы, фазовращатели и т.п. Смотрите так же: на нашем сайте.

2. Что такое головка громкоговорителя (ГГ)?

Это пассивный электро акустический преобразователь, предназначенный для преобразования сигналов звуковой частоты из электрической формы в акустическую.

3. Что такое пассивный преобразователь?

Это такой преобразователь, который НЕ увеличивает энергию электрического сигнала, поступающего на его вход.

4. Что такое акустическое оформление (АО)?

Это конструктивный элемент, обеспечивающий эффективное излучение звука ГГ. Иными словами, в большинстве случаев АО - это корпус АС, который может иметь вид акустического экрана, ящика, рупора и т.д.

5. Что такое однополосная АС?

Фактически то же самое, что и широкополосная. Это АС, все ГГ которой (обычно одна) работают в одном и том же диапазоне частот (т.е.фильтрация входного напряжения при помощи ПФ, равно как и сами фильтры отсутствуют).

6. Что такое многополосная АС?

Это АС, ГГ которой (в зависимости от их числа) работают в двух или более разных диапазонах частот. Однако непосредственный подсчет количества ГГ в АС (особенно выпуска прошлых лет) может ничего не сказать о реальном числе полос, поскольку на одну и ту же полосу может выделяться несколько ГГ.

7. Что такое АС открытого типа?

Это такая АС, в которой влияние упругости воздуха в объеме АО пренебрежимо мало, а излучения передней и тыльной сторон подвижной системы ГГ не изолированы друг от друга в области НЧ. Представляет собой плоский экран или ящик, у которого задняя стенка или полностью отсутствует, или же имеет ряд сквозных отверстий. Наибольшее влияние на частотную характеристику АС с АО открытого типа оказывают передняя стенка (в которой смонтированы ГГ) и ее размеры. Вопреки распространенному мнению, боковые стенки АО открытого типа влияют на характеристики АС крайне мало. Таким образом важен не внутренний объем, а площадь передней стенки. Даже при сравнительно небольших ее размерах воспроизведение НЧ значительно улучшается. Вместе с тем в области СЧ и, особенно, ВЧ экран уже не оказывает существенного влияния. Существенным недостатком таких систем является их подверженность акустическому «короткому замыканию», которое приводит к резкому ухудшению воспроизведения НЧ.

8. Что такое АС закрытого типа?

Это такая АС, в которой упругость воздуха в объеме АО соизмерима с упругостью подвижной системы ГГ, а излучения передней и тыльной сторон подвижной системы ГГ изолированы друг от друга во всем диапазоне частот. Иными словами, это АС, корпус которой выполнен герметично закрытым. Преимущество таких АС в том, что задняя поверхность диффузора не излучает и, таким образом, акустическое «короткое замыкание» полностью отсутствует. Но закрытые системы имеют другой недостаток - при колебаниях диффузора он должен превозмогать дополнительную упругость воздуха в АО. Наличие этой дополнительной упругости приводит к тому, что повышается резонансная частота подвижной системы ГГ, в результате чего ухудшается воспроизведение частот, лежащих ниже этой частоты.

9. Что такое АС с фазоинвертором (ФИ)?

Стремление получить достаточно хорошее воспроизведение НЧ при умеренном объеме АО довольно хорошо достигается в так называемых фазоинверсных системах. В АО таких систем делается щель или отверстие, в которое может быть вставлена трубка. Упругость объема воздуха в АО резонирует на какой-то частоте с массой воздуха в отверстии или трубке. Эта частота называется резонансной частотой ФИ. Таким образом, АС в целом становится состоящей как бы из двух резонансных систем - подвижной системы ГГ и АО с отверстием. При правильно выбранном соотношении резонансных частот этих систем воспроизведение НЧ значительно улучшается по сравнению с АО закрытого типа с таким же объемом АО. Несмотря на очевидные преимущества АС с ФИ, очень часто такие системы, изготовленные даже опытными людьми, не дают ожидаемых от них результатов. Причина этого в том, что для получения необходимого эффекта ФИ должен быть правильно рассчитан и настроен.

10. Что такое bass-reflex?

То же самое, что ФИ.

11. Что такое кроссовер?

То же самое, что переходной или разделительный фильтр.

12. Что такое переходной фильтр?

Это пассивная электрическая схема (обычно состоящая из катушек индуктивности и емкостей), которая включается перед входным сигналом и обеспечивает то, чтобы на каждую ГГ в АС поступало напряжение только тех частот, которые они должны воспроизводить.

13. Что такое «порядки» переходных фильтров?

Поскольку никакой фильтр не может обеспечить абсолютного обрезания напряжения на заданной частоте, ПФ рассчитывают на определенную частоту разделения, за пределами которой фильтр обеспечивает выбранную величину затухания, выражаемую в децибелах на октаву. Величина затухания называется крутизной и зависит от схемы построения ПФ. Не углубляясь особо в подробности, можно сказать, что простейший фильтр - так называемый ПФ первого порядка - состоит всего из одного реактивного элемента - емкости (при необходимости обрезать НЧ) или индуктивности (при необходимости обрезать ВЧ) и обеспечивает крутизну в 6дБ/окт. Вдвое большую крутизну - 12дБ/окт. - обеспечивает ПФ второго порядка, содержащий по два реактивных элемента в цепи. Затухание в 18дБ/окт. обеспечивает ПФ третьего порядка, содержащий по три реактивных элемента и т.д.

14. Что такое октава?

В общем случае - это удвоение или ополовинивание частоты.

15. Что такое рабочая плоскость АС?

Это плоскость, в которой расположены излучающие отверстия ГГ АС. Если ГГ многополосной АС расположены в разных плоскостях, то за рабочую принимается та, в которой расположены излучающие отверстия ГГ ВЧ.

16. Что такое рабочий центр АС?

Это точка, лежащая на рабочей плоскости, от которой производится отсчет расстояния до АС. В случае однополосных АС за него принимают геометрический центр симметрии излучающего отверстия. В случае многополосных АС за него принимается геометрический центр симметрии излучающих отверстий ГГ ВЧ или проекций этих отверстий на рабочую плоскость.

17. Что такое рабочая ось АС?

Это прямая, проходящая через рабочий центр АС, и перпендикулярная рабочей плоскости.

18. Что такое номинальное сопротивление АС?

Это заданное в технической документации активное сопротивление, которым замещают модуль импеданса АС при определении подводимой к нему электрической мощности. Согласно стандарту DIN минимальное значение модуля импеданса АС в заданном диапазоне частот не должно быть менее 80% от номинального.

19. Что такое импеданс акустических систем (АС)?

Без углубления в основы электротехники можно сказать, что импедансом называется ПОЛНОЕ электрическое сопротивление АС (включая и кроссоверы, и ГГ), в состав которого в виде довольно сложной зависимости входит не только привычное всем активное сопротивление R (которое можно измерить обычным омметром), но также и реактивные компоненты в лице емкости C (емкостное сопротивление, зависящее от частоты) и индуктивности L (индуктивное сопротивление, также зависящее от частоты). Известно, что импеданс является комплексной величиной (в смысле комплексных чисел) и, вообще говоря, представляет собой трехмерный график (в случае АС он часто похож на «поросячий хвост») в координатах «амплитуда-фаза-частота». Именно по причине его комплексности, когда говорят об импедансе как о численной величине, говорят о его МОДУЛЕ. Наибольший интерес с точки зрения исследований представляют проекции «поросячьего хвоста» на две плоскости: «амплитуда-от-частоты» и «фаза-от-частоты». Обе этих проекции, представленные на одном графике, носят название «графика Боде». Третья проекция «амплитуда-от-фазы» носит название «графика Найквиста». С появлением и распространением полупроводников усилители звуковой частоты стали вести себя более менее как источники «постоянного» напряжения, т.е. они, в идеале, должны поддерживать на выходе одно и то же напряжение вне зависимости от того, какая нагрузка на него повешена, и какова потребность в токе. Поэтому если предположить, что усилитель, приводящий ГГ АС в движение, представляет собой источник напряжения, то импеданс АС четко покажет, каков будет потребляемый ток. Как уже было сказано, импеданс не только реактивен (т.е. характеризуется ненулевым углом сдвига фаз), но еще и изменяется с частотой. Отрицательный угол сдвига фаз, т.е. когда ток опережает напряжение, обусловлен емкостными свойствами нагрузки. Положительный угол сдвига фаз, т.е когда ток отстает от напряжения, обусловлен индуктивными свойствами нагрузки.
Каков же импеданс типичных АС? Стандарт DIN требует, чтобы величина импеданса АС не отклонялась от указываемого номинала более чем на 20%.Однако на практике все обстоит гораздо хуже - отклонение импеданса от номинала составляет в среднем +/-43%! До тех пор, пока усилитель характеризуется низким выходным сопротивлением, даже такие отклонения не привнесут каких либо слышимых эффектов. Однако как только в игру вводится ЛАМПОВЫЙ усилитель с выходным сопротивлением порядка нескольких Ом(!), результат может быть весьма плачевным- окраска звучания неизбежна.
Измерение импеданса АС является одним их наиболее важных и мощных диагностических средств. По графику импеданса можно очень много сказать о том, что представляют собой данные АС, даже не видя их в глаза и не слыша. Имея перед глазами график импеданса, можно сходу сказать, какого типа данные АС- закрытого (один горб в области баса), фазоинверторного или трансмиссионного (два горба в области баса) или же какой либо разновидности рупорных (последовательность равномерно разнесенных пиков). Судить о том, насколько хорошо будет воспроизводиться бас (40-80Гц) и самый нижний бас (20-40 Гц) теми или иными АС можно по форме импеданса в этих областях, равно как и по добротности горбов. «Седло», образованное двумя пиками в низкочастотной области, типичными для фазоинверторной конструкции, указывает на частоту, на которую «настроен» фазоинвертор, каковая обычно является частотой, на которой отдача НЧ ГГ падает на 6дБ, т.е. приблизительно в 2 раза. Из графика импеданса можно также понять, есть ли в системе резонансы, и каков их характер. К примеру, если проводить измерения с достаточным разрешением по частоте, то, возможно, на графике появятся своего рода «зарубки», свидетельствующие о наличии резонансов в акустическом оформлении.
Ну и, пожалуй, самое важное, что можно вынести из графика импеданса, это то, насколько тяжела будет эта нагрузка для усилителя. Поскольку импеданс АС реактивен, ток будет либо отставать от напряжения сигнала, либо опережать его на фазовый угол. В худшем случае, когда фазовый угол составляет 90 градусов, от усилителя требуется выдать максимальный ток в то время как напряжение сигнала стремится к нулю. Поэтому знание «паспортных» 8 (или 4) Ом в качестве номинального сопротивления НЕ дает ровным счетом ничего. В зависимости от фазового угла импеданса, который будет на каждой частоте разным, те или иные АС могут оказаться тому или иному усилителю «не по зубам». Также очень важно отметить, что БОЛЬШИНСТВО усилителей НЕ кажутся нам не справляющимися с АС лишь потому, что на ТИПИЧНЫХ уровнях громкости, допустимых в ТИПИЧНЫХ домашних условиях, ТИПИЧНЫЕ АС НЕ требуют от ТИПИЧНОГО усилителя «пропитания» более чем всего несколько Ватт.

20. Что такое номинальная мощность ГГ?

Это заданная электрическая мощность, при которой нелинейные искажения ГГ не должны превышать требуемые.

21. Что такое максимальная шумовая мощность ГГ?

Это электрическая мощность специального шумового сигнала в заданном диапазоне частот, которую ГГ длительно выдерживает без тепловых и механических повреждений.

22. Что такое максимальная синусоидальная мощность ГГ?

Это электрическая мощность непрерывного синусоидального сигнала в заданном диапазоне частот, которую ГГ длительно выдерживает без тепловых и механических повреждений.

23. Что такое максимальная кратковременная мощность ГГ?

Это электрическая мощность специального шумового сигнала в заданном диапазоне частот, которую ГГ выдерживает без необратимых механических повреждений в течение 1с (испытания повторяют 60 раз с интервалом в 1 мин.)

24. Что такое максимальная долговременная мощность ГГ?

Это электрическая мощность специального шумового сигнала в заданном диапазоне частот, которую ГГ выдерживает без необратимых механических повреждений в течение 1 мин. (испытания повторяют 10 раз с интервалом в 2 мин.)

25. При прочих равных, АС с каким номинальным сопротивлением является более предпочтительной -4, 6 или 8Ом?

Более предпочтительной в общем случае является АС с более высоким номинальным сопротивлением, поскольку такая АС представляет собой более легкую нагрузку для усилителя и, следовательно, гораздо менее критична к выбору последнего.

26. Что такое импульсная характеристика АС?

Это ее отклик на «идеальный» импульс.

27. Что такое «идеальный» импульс?

Это мгновенный (время нарастания равно 0) рост напряжения до некоторого значения, «застревание» на этом постоянном уровне на короткий промежуток времени (скажем, доли миллисекунды) и затем мгновенный же спад обратно до 0В. Ширина такого импульса обратно пропорциональна ширине полосы частот сигнала. Если бы нам захотелось сделать импульс бесконечно коротким, то для того, чтобы передать его форму в полной неизменности, нам потребовалась бы система с бесконечной полосой пропускания.

28. Что такое переходная характеристика АС?

Это ее отклик на сигнал типа «ступенька». Переходная характеристика дает наглядное представление о поведении всех ГГ АС во времени и позволяет судить о степени когерентности излучения АС.

29. Что такое сигнал типа «ступенька»?

Это когда напряжение на входе в АС мгновенно нарастает от 0В до некоторого положительного значения и остается таким продолжительное время.

30. Что такое когерентность?

Это согласованное протекание нескольких колебательных или волновых процессов во времени. Применительно к АС означает одновременность прихода сигналов от различных ГГ к слушателю, т.е. фактически отражает факт сохранности фазовой целостности информации.

31. Что такое полярность ГГ?

Это определенная полярность электрического напряжения на выводах ГГ, вызывающая движение подвижной системы ГГ в заданном направлении. Полярность многополосной АС определяется полярностью ее НЧ ГГ.

32. Что такое подключение ГГ в абсолютной положительной полярности?

Это подключение ГГ к источнику напряжения таким образом, что при подаче на нее электрического напряжения положительной полярности происходит выдвижение катушки из зазора магнита вперед, т.е. имеет место компрессия воздуха.

33. Что такое АЧХ АС?

Это амплитудно-частотная характеристика, т.е. зависимость от частоты уровня звукового давления, развиваемого АС в определенной точке свободного поля, находящейся на определенном расстоянии от рабочего центра (обычно 1м).

34. Что такое полярная характеристика?

Это графическая зависимость в условиях свободного поля уровня звукового давления (для данной полосы частот и расстояния от рабочего центра ГГ) от угла между рабочей осью ГГ и направлением на точку измерения.

35. На какие условные части разделяется частотный диапазон для удобства словесного описания?

  • 20-40Гц - нижний бас
  • 40-80Гц - бас
  • 80-160Гц - верхний бас
  • 160-320Гц - нижний мидбас
  • 320-640Гц - мидбас
  • 640-1.280Гц - верхний мидбас
  • 1.28-2.56кГц - нижняя середина
  • 2.56-5.12кГц - середина
  • 5.12-10.24кГц - верхняя середина
  • 10.24-20.48кГц - верх

36. Как называются переменные регуляторы, которые можно увидеть на некоторых АС?

Аттенюаторы. Иногда их называют акустическими эквалайзерами.

37. Каково назначение аттенюаторов?

В зависимости от градуировки - увеличивать и/или уменьшать напряжение, поступающее на ту или иную ГГ, что, соответственно, приводит к увеличению и/или уменьшению уровня звукового давления в определенном частотном диапазоне. Аттенюаторы не вносят изменений в форму АЧХ отдельных ГГ, но изменяют ОБЩИЙ вид АЧХ АС за счет «подъема» или «опускания» определенных участков спектра. В ряде случаев аттенюаторы позволяют в той или иной степени «адаптировать» АС к конкретным условиям прослушивания.

38. Что такое чувствительность АС?

Чувствительность АС часто и повсеместно путают с КПД. КПД определяется как отношение выдаваемой АС АКУСТИЧЕСКОЙ мощности к потребляемой ЭЛЕКТРИЧЕСКОЙ. Т.е. вопрос формулируется так: если я засажу в АС 100 электрических Ватт, сколько Ватт акустических (звуковых) я получу? А ответ на него - «немного, мало». КПД типичной ГГ с подвижной катушкой составляет порядка 1%.
КПД обычно дается в виде уровня звукового давления, создаваемого АС на заданном расстоянии от рабочего центра АС при подводимой мощности в 1 Вт, т.е. в Децибелах на Ватт на метр (дБ/Вт/м). Тем не менее, знание этой величины полезным никак не назовешь, поскольку определить, что такое для данных конкретных АС подводимая мощность в 1 Вт, крайне сложно. Почему? Потому что налицо зависимость как от импеданса, так и от частоты. Подайте на АС с импедансом 8 Ом на 1 кГц сигнал этой же частоты и уровнем в 2.83 Вольта, и да, вне всякого сомнения, вы запитаете АС мощностью в 1 Вт (по закону Ома «мощность» = «напряжение в квадрате» / «сопротивление»). И вот здесь всплывает большое «НО» - мало того, что импеданс АС непостоянен и зависит от частоты, на более низких частотах он может драматически снижаться. Скажем, до 2 Ом на 200 Гц. Запитав теперь АС все теми же 2.83 Вольтами, но на частоте 200Гц, мы тем самым потребуем от усилителя отдать нам в 4(!) раза больше мощности. Для одного и того же уровня звукового давления АС на 1 кГц оказываются работающими вчетверо более эффективно, чем на 200 Гц.
А почему, собственно, КПД вообще имеет значение? Если полвека назад аудиоинженеры были сильно озабочены проблемой передачи мощности(а инженеры-телекоммуникационщики заинтересованы в этом и по сей день!) то с приходом полупроводниковых устройств усилители звуковой частоты стали вести себя более менее как источники «постоянного» напряжения - они поддерживают одно и то же напряжение на выходе вне зависимости от того, какая нагрузка на него повешена, и каков потребляемый ток. Вот поэтому-то на передний план и выходит НЕ КПД, а ЧУВСТВИТЕЛЬНОСТЬ по напряжению, т.е. то, как громко играет АС при заданном напряжении на выходе усилителя. Чувствительность по напряжению обычно определяется как уровень звукового давления, развиваемого АС на расстоянии в 1 метр от рабочего центра АС при напряжении на клеммах в 2.83 Вольта (т.е. напряжении, необходимом для рассеивания 1 Ватта на 8-ми омном резисторе).
Преимущество указания чувствительности вместо КПД состоит в том, что она всегда остается постоянной вне зависимости от импеданса АС, поскольку предполагается, что усилитель всегда сможет обеспечить ток, достаточный для поддержания 2.83 Вольт. Чем ближе приближается модуль импеданса АС к оному чистого 8-ми омного резистора, тем выше степень эквивалентности этих двух критериев. Однако в случае, когда импеданс АС существенно отличается от 8Ом, польза от знания КПД сводится на нет.
Чувствительность АС по напряжению важна в частности при подборе пары «усилитель - АС». Если у вас есть усилитель мощностью в 20 Вт, вам лучше крепко подумать об АС с ОЧЕНЬ высокой чувствительностью, поскольку в противном случае громко музыку вам никогда не слушать. И обратно, если вы возьмете АС с достаточно высокой чувствительностью - скажем, 100 дБ/2.83В/м, то может оказаться, что и 5-ти ваттного усилителя вам хватит за глаза в том смысле, что тратить 10.000 $ на усилитель мощностью в 600 Вт при таких АС было бы швырянием денег на ветер.
Однако, не смотря на то, что всем совершенно очевидно, что чувствительность по напряжению является более чем важным параметром АС, многие люди все равно не хотят приводить ее как следует. Проблема заключается в том, что АС имеют тенденцию характеризоваться НЕровной АЧХ, а потому отыскание пикового значения среди всех ее горбылей и заявления из серии «Раз на этой частоте АС играет громче всего, значит, это и есть чувствительность!», является для маркетинговых отделов компаний, производящих АС, ВЕЛИКИМ ИСКУШЕНИЕМ.
Так какова же реальная чувствительность типичных АС? Оказывается, порядка 85-88 дБ/2.83В/м. Доля таких АС составляет около 40%. Любопытно, что АС с низкой чувствительностью (менее 80) - это в основном панельные АС всевозможных типов, а АС с высокой чувствительностью (более 95) - профессиональные мониторы. И это неудивительно. Достижение большой чувствительности требует героических усилий на инженерном поприще, что, разумеется, ВСЕГДА дорого обходится. А подавляющее большинство конструкторов АС стеснены рамками БЮДЖЕТА, что означает лишь то, что они ВСЕГДА будут искать компромиссы, экономя на размерах магнитов, форме подвижных катушек и диффузорах.
Также стоит отметить, что реально измеряемая чувствительность ВСЕГДА МЕНЬШЕ той, что указывается производителем в документах. Производители всегда слишком оптимистичны.

39. Нужно ли устанавливать АС на шипы?

Очень желательно.

40. Для чего нужны шипы?

Для того, чтобы максимально редуцировать передачу вибрации акустического оформления АС соприкасающимся с ним предметам (перекрытиям помещения, полкам, например). Эффект применения шипов основан на радикальном снижении площади контактирующих поверхностей, которая сводится к площади острий шипов/конусов. Важно понимать при этом, что установка АС на шипы НЕ устраняет вибрации корпуса, а лишь снижает эффективность их дальнейшего распространения.

41. Имеет ли значение место расположения шипов под АС?

Самой неблагоприятной опорой для АС является установка ее на 3 (три) металлических шипа/конуса, из которых один размещается посередине у задней стенки, а два остальных - под двумя передними углами. Такая постановка АС «дает волю» практически ВСЕМ корпусным резонансам.

42. Как минимизировать корпусные резонансы АС?

Самым ЛУЧШИМ способом СНИЖЕНИЯ корпусных резонансов АС, обусловленных тем, как и на что они установлены, является использование в качестве прокладки вибропоглощающего материала вроде плотного синтепона.

43. В каких случаях оправдано использование bi-wiring/bi-amping?

Bi-wiring НЕ имеет под собой физической основы и, как следствие, НЕ имеет НИКАКОГО слышимого эффекта, а стало быть, абсолютно лишен смысла.
Bi-amping бывает двух типов: ложный и грамотный. Посмотреть, что это означает, можно. Несмотря на существование физической обоснованности применения, эффект от bi-amping"а исчезающе мал.

44. Влияет ли внешняя отделка АС (виниловая пленка, натуральный шпон, порошковая краска и т.д.) на звук?

Нет, на звук НЕ влияет никоим образом. Только на ЦЕНУ.

45. Влияет ли внутренняя отделка (поролон, минвата, синтепон и т.д.) АС на звук?

Целью ЛЮБОЙ "набивки" АС чем-либо является стремление или необходимость подавлять стоячие волны, возникающие внутри любого акустического оформления, наличие которых может серьезным образом ухудшать характеристики АС. Поэтому все "влияние" внутренней отделки на звук сводится к тому, насколько хорошо эта отделка препятствует возникновению стоячих волн. Оценить наличие внутрикорпусных резонансов можно, например, по результатам измерения импеданса, проведенного с высоким разрешением по частоте.

46. Влияют ли на звук грили, а также другие декоративные обрамления передних панелей АС или же отдельных ГГ (например, металлические сетки)?

Строго говоря, ДА, влияют. И это можно в большинстве случаев воочию увидеть при измерениях. Вопрос лишь в том, можно ли это еще и услышать? В некоторых случаях, когда это влияние превышает 1дБ, его вполне возможно/реально услышать в форме некоторой "шероховатости" звучания, как правило, в области ВЧ. Влияние матерчатых "декораций" минимально. По мере повышения жесткости "декораций" (особенно касается металлических изделий) степень заметности увеличивается.

47. Есть ли реальные преимущества у колонок со скруглёнными углами?

Нет никаких.

48. Специальная форма пылезащитных колпачков на динамиках - необходимость или украшение?

Ответ может носить только предположительный характер. В наши дни, когда для наблюдения за "поведением" поверхности диафрагмы при возвратно-поступательном движении используется (или МОЖЕТ использоваться) лазерная виброметрия, вполне может быть, что форма колпачков выбирается НЕ случайным образом и НЕ для красоты, а для оптимизации работы диафрагмы в поршневом режиме. Кроме того, пылезащитные колпачки в ряде случаев способствуют выравниванию АЧХ (обычно в области 2-5кГц).

49. Что такое поршневой режим?

Это режим, при котором ВСЯ поверхность диффузора ГГ движется как одно целое.
Очень удобно пояснить это понятие на примере широкополосной ГГ. В области НЧ скорость изменения фазы сигнала в звуковой катушке меньше скорости распространения механического возбуждения в материале диффузора и последний ведет себя как единое целое, т.е. колеблется как поршень. На этих частотах частотная характеристика ГГ имеет гладкую форму, что свидетельствует об отсутствии парциального возбуждения отдельных участков диффузора.
Обычно разработчики ГГ стремятся расширить область поршневого действия диффузора в сторону ВЧ путем придания специальной формы образующей конуса. Для правильно сконструированного целлюлозного диффузора область поршневого действия может быть приблизительно определена как длина волны звука, равная длине окружности диффузора в основании конуса. На средних частотах скорость изменения фазы сигнала в звуковой катушке превышает скорость распространения механического возбуждения в материале диффузора и в нем возникают волны изгиба, диффузор уже не колеблется как единое целое. На этих частотах показатель затухания механических колебаний в материале диффузора еще недостаточно велик и колебания, достигая диффузородержателя, отражаются от него и распространяются по диффузору обратно в сторону звуковой катушки.
В результате взаимодействия прямых и отраженных колебаний в диффузоре возникает картина стоячих волн, образуются участки с интенсивным противофазным излучением. При этом на частотной характеристике наблюдаются резкие нерегулярности (пики и провалы), размах которых может достигать у не оптимально сконструированного диффузора десятка дБ.
На ВЧ показатель затухания механических колебаний в материале диффузора возрастает и стоячие волны не образуются. Вследствие ослабления интенсивности механических колебаний, излучение высоких частот происходит преимущественно областью диффузора, прилегающей к звуковой катушке. Поэтому для увеличения воспроизведения ВЧ применяют рупорки, скрепленные с подвижной системой ГГ. Для уменьшения неравномерности АЧХ в массу для изготовления диффузоров ГГ вносят различные демпфирующие (увеличивающие затухание механических колебаний) присадки.

50. Почему в большинстве АС вообще используется несколько ГГ (две или более)?

Прежде всего потому, что качественное излучение звука в различных частях спектра предъявляет слишком различные требования к ГГ, полностью удовлетворить которым одна единственная ГГ (широкополосная) не в состоянии уже хотя бы чисто физически (в частности см. предыдущий пункт). Одним из ключевых моментов является существенное увеличение направленности излучения любой ГГ с ростом частоты. В идеале ГГ в АС должны не только работать в поршневом режиме каждая, что, вообще говоря, влечет за собой резкое увеличение общего числа ГГ в системе (и, соответственно, увеличение числа переходных фильтров, что автоматически вызывает резкий рост сложности и стоимости изделия), но также характеризоваться всенаправленностью излучения, что возможно только при том условии, что линейный размер ГГ много МЕНЬШЕ длины волны излучения, которое она испускает. Только в этом случае ГГ будет отличаться хорошей дисперсией.
Пока частота достаточно низка, это условие выполняется, и ГГ является всенаправленной. С ростом частоты длина волны излучения уменьшается и, рано или поздно, становится СОПОСТАВИМА с линейными размерами ГГ (диаметром). Это, в свою очередь, приводит к резкому увеличению направленности излучения - ГГ в конце концов начинает излучать как прожектор, строго вперед, что совершенно неприемлемо. Возьмем для примера басовик-лопух диаметром 30см. На частоте 40Гц длина волны излучения равна 8.6м, что в 28 раз превышает его линейный размер - в этой области такой басовик является всенаправленным. На частоте 1.000Гц длина волны уже составляет 34см, что уже буквально СОПОСТАВИМО с диаметром. На этой частоте дисперсия такого басовика будет радикально хуже, излучение - предельно направленно. Традиционные двухполосные АС с частотой перехода в районе 2-3кГц - что соответствует длинам волн 11-17см - оснащаются басовиками с линейными размерами точно такого же порядка, что приводит к РЕЗКОМУ ухудшению полярной характеристики АС в указанной области, имеющей форму провала или ущелья. Провал обусловлен тем, что в то время как НЧ ГГ в данной области становится резконаправленной, пищалка (обычно диаметром 1.5-2см) в той же самой области является практически всенаправленной.
В частности именно поэтому хорошие ТРЕХполосные АС всегда ЛУЧШЕ хороших ДВУХполосных.

51. Что такое дисперсия?

В данном контексте то же самое, что "излучательная способность в различных направлениях".

52. Что такое диаграмма направленности?

То же, что полярная характеристика.

53. Что такое неравномерность АЧХ?

Это разность (выраженная в дБ) максимального и минимального значений уровней звукового давления в заданном диапазоне частот. Часто можно прочитать в литературе, что пики и провалы АЧХ уже 1/8 октавы не учитываются. Однако такой подход не является прогрессивным, поскольку наличие на АЧХ серьезных пиков и провалов (пусть даже узких) свидетельствует о недоброкачественном выполнении диффузора, о наличии в нем стоячих волн, т.е. о недоработке ГГ.

54. Почему головки в АС иногда включаются в различной полярности?

Поскольку переходные фильтры в ЛЮБОМ случае изменяют (или как еще говорят, вращают) фазу входного сигнала - чем выше порядок фильтра, тем больше фазовый сдвиг - то в ряде случаев ситуация складывается таким образом, что в зоне перехода сигналы от различных ГГ «встречаются» в противофазе, что приводит к серьезным искажениям АЧХ, носящим вид крутых провалов. Включение одной из ГГ в другой полярности приводит к тому, что фаза переворачивается еще на 180 градусов, что зачастую благоприятно сказывается на выравнивании АЧХ в зоне перехода.

55. Что такое кумулятивное затухание спектра (КЗС)?

Это совокупность осевых АЧХ АС, полученных с определенным временным промежутком при затухании поданного на нее единичного импульса, и отображенных на одном трехмерном графике. Поскольку, будучи электромеханической системой, АС является устройством «инерционным», то колебательные процессы продолжаются какое-то время и после прекращения импульса, постепенно затухая во времени. Таким образом, график кумулятивного затухания спектра наглядно показывает, какие области спектра отличаются повышенной пост-импульсной активностью, т.е. позволяет выявлять так называемые запаздывающие резонансы АС.
Чем «чище» выглядит график КЗС АС в области выше 1кГц, тем выше шанс того, что такие АС будут субъективно оценены слушателями как отличающиеся «большой прозрачностью», «отсутствием зернистости» и «чистотой звучания». И наоборот, АС, о которых говорят, что они звучат «зернисто» или «жестко», почти со 100% вероятностью характеризуются сильной «гребнистостью» графиков КЗС (хотя, конечно же, такие факторы как нелинейные искажения и нарушения частотного баланса тоже могут играть свою роль).

56. Как называются своеобразные рассекатели причудливой формы или геометрии, которые ставят поверх некоторых ГГ?

Фазовращатели, дефлекторы, акустические линзы.

57. Зачем применяются фазовращатели?

Во всяком случае не для красоты, а для предположительного улучшения дисперсионных характеристик АС.

58. Оказывает ли материал, из которого изготовлен диффузор ГГ (шелк, металл, бумага, полипропилен, кевлар, карбон, композит и т.д.), какое-либо влияние на звук?

В том смысле, что, может ли звук в зависимости от примененного материала быть «шелковым», «бумажным», «пластиковым», «металлическим» и всяким таким прочим, то ответ - НЕТ, НЕ может. Никакого влияния на звук в ПРЯМОМ смысле материал грамотно сконструированного диффузора НЕ оказывает. Так в чем же тогда смысл использования РАЗНЫХ материалов при изготовлении диффузоров? Смысл в том, что любой грамотный разработчик стремится, по сути, лишь к одной цели: использовать для производства диффузоров такой материал, который удовлетворял бы одновременно следующим требованиям: был бы жестким, легким, прочным, хорошо поддающимся демпфированию, недорогим и, главное, легко тиражируемым, особенно для целей массового производства. В контексте колонкостроения все перечисленные выше материалы (а также всевозможные остальные, не попавшие в список) отличаются друг от друга лишь только что перечисленными характеристиками и свойствами. А это отличие, в свою очередь, сказывается только и исключительно на подходах к снижению слышимой окраски звучания, появляющейся из-за резонансов, возникающих в диафрагмах.

59. Правда ли, что хороший, «настоящий» бас можно получить только на АС с большими басовиками-лопухами сантиметров по 30 в диаметре?

НЕТ, это - неправда. Количество и качество баса от размеров басовика зависят крайне мало.

60. В чем же тогда смысл больших басовиков-лопухов?

Большой басовик имеет бОльшую площадь поверхности и, стало быть, приводит в движение бОльшую массу воздуха, чем басовик меньшего размера. Следовательно, звуковое давление, развиваемое таким басовиком также больше, что напрямую сказывается на чувствительности - АС с большими басовиками, как правило, имеют очень высокую чувствительность (обычно выше 93дБ/Вт/м).

25.12.2005 Глобалаудио




  • Сравнительное тестирование стереоколонок Edifier и Microlab (апрель 2014)
  • Мощность

    Под словом мощность в разговорной речи многие подразумевают «мощь», «силу». Поэтому вполне естественно, что покупатели связывают мощность с громкостью: «Чем больше мощность, тем лучше и громче будут звучать колонки». Однако это распространенное мнение в корне ошибочно! Далеко не всегда колонка мощностью 100 Вт будет играть громче или качественней той, у которой указана мощность «всего» в 50 Вт. Значение мощности, скорее, говорит не о громкости, а о механической надежности акустики. Те же 50 или 100 Вт — это совсем не громкость звука , издаваемого колонкой. Динамические головки сами по себе имеют низкий КПД и преобразуют в звуковые колебания лишь 2-3% мощности подводимого к ним электрического сигнала (к счастью, громкости издаваемого звука вполне хватает для создания звукового сопровождения). Величина, которую указывает производитель в паспорте динамика или системы в целом, говорит лишь о том, что при подведении сигнала указанной мощности динамическая головка или акустическая система не выйдет из строя (вследствие критического разогрева и межвиткового КЗ провода, «закусывания» каркаса катушки, разрыва диффузора, повреждения гибких подвесов системы и т.п.).

    Таким образом, мощность акустической системы - это технический параметр, величина которого не имеет прямого отношения к громкости звучания акустики, хотя и связана с ней некоторой зависимостью. Номинальные значения мощности динамических головок, усилительного тракта, акустической системы могут быть разными. Указываются они, скорее, для ориентировки и оптимального сопряжения между компонентами. Например, усилитель значительно меньшей или значительно большей мощности может вывести колонку из строя в максимальных положениях регулятора громкости на обоих усилителях: на первом - благодаря высокому уровню искажений, на втором - благодаря нештатному режиму работы колонки.

    Мощность может измеряться различными способами и в различных тестовых условиях. Существуют общепринятые стандарты этих измерений. Рассмотрим подробнее некоторые из них, наиболее часто употребляемые в характеристиках изделий западных фирм:

    RMS (Rated Maximum Sinusoidal power — установленная максимальная синусоидальная мощность). Мощность измеряется подачей синусоидального сигнала частотой 1000 Гц до достижения определенного уровня нелинейных искажений. Обычно в паспорте на изделие пишется так: 15 Вт (RMS). Эта величина говорит, что акустическая система при подведении к ней сигнала мощностью 15 Вт может работать длительное время без механических повреждений динамических головок. Для мультимедийной акустики завышенные по сравнению с Hi-Fi колонками значения мощности в Вт (RMS) получаются вследствие измерения при очень высоких гармонических искажениях, часто до 10%. При таких искажениях слушать звуковое сопровождение практически невозможно из-за сильных хрипов и призвуков в динамической головке и корпусе колонки.

    PMPO (Peak Music Power Output — пиковая музыкальная мощность). В данном случае мощность измеряется подачей кратковременного синусоидального сигнала длительностью менее 1 секунды и частотой ниже 250 Гц (обычно 100 Гц). При этом не учитывается уровень нелинейных искажений. Например, мощность колонки равна 500 Вт (PMPO). Этот факт говорит, что акустическая система после воспроизведения кратковременного сигнала низкой частоты не имела механических повреждений динамических головок. В народе единицы измерения мощности Вт (PMPO) называют «китайскими ваттами» из-за того, что величины мощности при такой методике измерения достигают тысячи Ватт! Представьте себе - активные колонки для компьютера потребляют из сети переменного тока электрическую мощность 10 В*А и развивают при этом пиковую музыкальную мощность 1500 Вт (PMPO).

    Наравне с западными существуют также советские стандарты на различные виды мощности. Они регламентируются действующими по сей день ГОСТ 16122-87 и ГОСТ 23262-88. Эти стандарты определяют такие понятия, как номинальная, максимальная шумовая, максимальная синусоидальная, максимальная долговременная, максимальная кратковременная мощности. Некоторые из них указываются в паспорте на советскую (и постсоветскую) аппаратуру. В мировой практике эти стандарты, естественно, не используются, поэтому мы не будем на них останавливаться.

    Делаем выводы: наиболее важным на практике является значение мощности, указанной в Вт (RMS) при значениях коэффициента гармоник (THD), равного 1% и менее. Однако сравнение изделий даже по этому показателю очень приблизительно и может не иметь ничего общего с реальностью, ведь громкость звука характеризуется уровнем звукового давления. Поэтому информативность показателя «мощность акустической системы» — нулевая .

    Чувствительность

    Чувствительность — один из параметров, указываемых производителем в характеристике акустических систем. Величина характеризует интенсивность звукового давления, развиваемого колонкой на расстоянии 1 метра при подаче сигнала частотой 1000 Гц и мощностью 1 Вт. Измеряется чувствительность в децибелах (дБ) относительно порога слышимости (нулевой уровень звукового давления равен 2*10^-5 Па). Иногда используется обозначение — уровень характеристической чувствительности (SPL, Sound Pressure Level). При этом для краткости в графе с единицами измерений указывается дБ/Вт*м либо дБ/Вт^1/2*м. При этом важно понимать, что чувствительность не является линейным коэффициентом пропорциональности между уровнем звукового давления, мощностью сигнала и расстоянием до источника. Многие фирмы указывают характеристики чувствительности динамических головок, измеренные при нестандартных условиях.

    Чувствительность — характеристика, более важная при проектировании собственных акустических систем. Если вы не осознаете до конца, что означает этот параметр, то при выборе мультимедийной акустики для PC можно не обращать на чувствительность особого внимания (благо указывается она не часто).

    АЧХ

    Амплитудно-частотная характеристика (АЧХ ) в общем случае представляет собой график, показывающий разницу величин амплитуд выходного и входного сигналов во всем диапазоне воспроизводимых частот. АЧХ измеряют подачей синусоидального сигнала неизменной амплитуды при изменении его частоты. В точке на графике, где частота равна 1000 Гц, принято откладывать на вертикальной оси уровень 0 дБ. Идеален вариант, при котором АЧХ представлена прямой линией, но таких характеристик в реальности у акустических систем не бывает. При рассмотрении графика нужно обратить особое внимание на величину неравномерности. Чем больше величина неравномерности, тем больше частотных искажений тембра в звучании.

    Западные производители предпочитают указывать диапазон воспроизводимых частот, который представляет собой «выжимку» информации из АЧХ: указываются лишь граничные частоты и неравномерность. Допустим, написано: 50 Гц - 16 кГц (±3 дБ). Это значит, что у данной акустической системы в диапазоне 50 Гц - 16 кГц звучание достоверное, а ниже 50 Гц и выше 15 кГц неравномерность резко увеличивается, АЧХ имеет так называемый «завал» (резкий спад характеристики).

    Чем это грозит? Уменьшение уровня низких частот подразумевает потерю сочности, насыщенности звучания басов. Подъем в области НЧ вызывает ощущения бубнения и гудева колонки. В завалах высоких частот звук будет тусклым, неясным. Подъемы ВЧ означают присутствие раздражающих, неприятных шипящих и свистящих призвуков. У мультимедийных колонок величина неравномерности АЧХ обычно выше, чем у так называемой Hi-Fi акустики. Ко всем рекламным заявлениям фирм-производителей об АЧХ колонки типа 20 - 20000 Гц (теоретический предел возможности) нужно относиться с изрядной долей скептицизма. При этом часто не указывается неравномерность АЧХ, которая может составлять при этом немыслимые величины.

    Поскольку производители мультимедийной акустики часто «забывают» указать неравномерность АЧХ акустической системы, встречаясь с характеристикой колонки 20 Гц - 20000 Гц, надо держать ухо востро. Существует большая вероятность купить вещь, не обеспечивающую даже более или менее равномерную характеристику в полосе частот 100 Гц - 10000 Гц. Сравнивать диапазон воспроизводимых частот с разными неравномерностями нельзя вовсе.

    Нелинейные искажения, коэффициент гармоник

    Кг — коэффициент гармонических искажений. Акустическая система представляет собой сложное электроакустическое устройство, которое имеет нелинейную характеристику усиления. Поэтому сигнал по прошествии всего звукового тракта на выходе обязательно будет иметь нелинейные искажения. Одними из самых явных и наиболее простых в измерении являются гармонические искажения.

    Коэффициент — величина безразмерная. Указывается либо в процентах, либо в децибелах. Формула пересчета: [дБ] = 20 log ([%]/100). Чем больше величина коэффициента гармоник, тем обычно хуже звучание.

    Кг колонок во многом зависит от мощности подаваемого на них сигнала. Поэтому глупо делать заочные выводы или сравнивать колонки только лишь по коэффициенту гармоник, не прибегая к прослушиванию аппаратуры. К тому же для рабочих положений регулятора громкости (обычно это 30..50%) значение производителями не указывается.

    Полное электрическое сопротивление, импеданс

    Электродинамическая головка имеет определенное сопротивление постоянному току, зависящее от толщины, длины и материала провода в катушке (такое сопротивление еще называют резистивным или реактивным). При подаче музыкального сигнала, который представляет собой переменный ток, сопротивление головки будет меняться в зависимости от частоты сигнала.

    Импеданс (impedans) — это полное электрическое сопротивление переменному току, измеренное на частоте 1000 Гц. Обычно импеданс акустических систем равен 4, 6 или 8 Ом.

    В целом величина полного электрического сопротивления (импеданс) акустической системы ни о чем, связанном с качеством звучания того или иного изделия, покупателю не скажет. Производителем указывается этот параметр лишь, чтобы сопротивление учитывали при подключении акустической системы к усилителю. Если значение сопротивления колонки ниже, чем рекомендуемое значение нагрузки усилителя, в звучании могут присутствовать искажения или сработает защита от короткого замыкания; если выше, то звук будет значительно тише, нежели с рекомендуемым сопротивлением.

    Корпус колонки, акустическое оформление

    Одним из важных факторов, влияющих на звучание акустической системы, является акустическое оформление излучающей динамической головки (динамика). При конструировании акустических систем производитель обычно сталкивается с проблемой в выборе акустического оформления. Их насчитывается больше десятка видов.

    Акустическое оформление делится на акустически разгруженное и акустически нагруженное. Первое подразумевает оформление, при котором колебание диффузора ограничивается только жесткостью подвеса. При втором колебание диффузора ограничивается помимо жесткости подвеса еще упругостью воздуха и акустическим сопротивлением излучению. Также акустическое оформление делится на системы одинарного и двойного действий. Система одинарного действия характеризуется возбуждением звука, идущего к слушателю, посредством только одной стороны диффузора (излучение другой стороны нейтрализуется акустическим оформлением). Система двойного действия подразумевает использование в формировании звука обеих поверхностей диффузора.

    Поскольку на высокочастотные и среднечастотные динамические головки акустическое оформление колонки практически не влияет, мы расскажем о наиболее распространенных вариантах низкочастотного акустического оформления корпуса.

    Очень широко применима акустическая схема, получившая название «закрытый ящик». Относится к нагруженному акустическому оформлению. Представляет собой закрытый корпус с выведенным на фронтальную панель диффузором динамика. Достоинства: хорошие показатели АЧХ и импульсная характеристика. Недостатки: низкий КПД, необходимость в мощном усилителе, высокий уровень гармонических искажений.

    Но вместо того, чтобы бороться со звуковыми волнами, вызванными колебаниями обратной стороны диффузора, их можно использовать. Наиболее распространенным вариантом из систем двойного действия является фазоинвертор. Представляет собой трубу определенной длины и сечения, вмонтированную в корпус. Длину и сечение фазоинвертора рассчитывают таким образом, что на определенной частоте в нем создается колебание звуковых волн, синфазные с колебаниями, вызванными фронтальной стороной диффузора.

    Для сабвуферов широко применяется акустическая схема с общепринятым названием «ящик-резонатор». В отличие от предыдущего примера диффузор динамика не выведен на панель корпуса, а находится внутри, на перегородке. Сам динамик непосредственного участия в формировании спектра низких частот не принимает. Вместо этого диффузор лишь возбуждает звуковые колебания низкой частоты, которые потом многократно увеличиваются по громкости в трубе фазоинвертора, выполяющего роль резонансной камеры. Достоинством этих конструктивных решений является высокий КПД при малых габаритах сабвуфера. Недостатки проявляются в ухудшении фазовых и импульсных характеристик, звучание становится утомляющим.

    Оптимальным выбором будут колонки среднего размера с деревянным корпусом, выполненные по закрытой схеме или с фазоинвертором. При выборе сабвуфера следует обратить внимание не на его громкость (по этому параметру даже у недорогих моделей обычно имеется достаточный запас), а на достоверное воспроизведение всего диапазона низких частот. С точки зрения качества звучания, наиболее нежелательны колонки с тонким корпусом или очень маленьких размеров.